2024届四川省广元市剑阁县中考数学模拟预测题含解析_第1页
2024届四川省广元市剑阁县中考数学模拟预测题含解析_第2页
2024届四川省广元市剑阁县中考数学模拟预测题含解析_第3页
2024届四川省广元市剑阁县中考数学模拟预测题含解析_第4页
2024届四川省广元市剑阁县中考数学模拟预测题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年四川省广元市剑阁县中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30° B.35° C.40° D.50°2.下列说法中,正确的是()A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形3.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲 B.乙 C.丙 D.丁4.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是()A. B.C. D.5.不等式组的解集在数轴上表示正确的是()A. B.C. D.6.二次函数的图像如图所示,下列结论正确是()A. B. C. D.有两个不相等的实数根7.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()A.135° B.115° C.65° D.50°8.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x…–2–1012…y…04664…从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的9.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54° B.64° C.27° D.37°10.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.有一个根是0二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°.下列结论:①PA=PB;②当OA=OB时四边形OAPB是正方形;③四边形OAPB的面积和周长都是定值;④连接OP,AB,则AB>OP.其中正确的结论是_____.(把你认为正确结论的序号都填上)12.一个正多边形的每个内角等于,则它的边数是____.13.分解因式:=_______.14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.15.已知a,b为两个连续的整数,且a<<b,则ba=_____.16.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.三、解答题(共8题,共72分)17.(8分)如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.18.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是度.若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.19.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.20.(8分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.21.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)22.(10分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(12分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次,如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】

根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【题目详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【题目点拨】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键2、B【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A.两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B.两个轴对称的三角形,一定全等,正确;C.三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D.三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.故选B.3、A【解题分析】

根据方差的概念进行解答即可.【题目详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【题目点拨】本题考查了方差,解题的关键是掌握方差的定义进行解题.4、C【解题分析】

根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.【题目详解】解:∵DE∥BC,∴=,BD≠BC,∴≠,选项A不正确;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,选项B不正确;∵EF∥AB,∴=,选项C正确;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,选项D不正确;故选C.【题目点拨】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.5、C【解题分析】

分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【题目详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6、C【解题分析】【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【题目详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;当x=-1时,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C选项正确;∵抛物线的顶点为(1,3),∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.7、B【解题分析】

由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P=

∠AOB,然后根据圆内接四边形的性质求解.【题目详解】解:在圆上取点

P

,连接

PA

PB.∵OA=OB

,∴∠OAB=∠OBA=25°

,∴∠AOB=180°−2×25°=130°

,∴∠P=∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【题目点拨】本题考查的是圆,熟练掌握圆周角定理是解题的关键.8、C【解题分析】当x=-2时,y=0,

∴抛物线过(-2,0),

∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;

当x=0时,y=6,

∴抛物线与y轴的交点坐标为(0,6),故B正确;

当x=0和x=1时,y=6,

∴对称轴为x=,故C错误;

当x<时,y随x的增大而增大,

∴抛物线在对称轴左侧部分是上升的,故D正确;

故选C.9、C【解题分析】

由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【题目详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故选:C.【题目点拨】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、A【解题分析】

判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.【题目详解】∵一次函数y=kx+b的图像经过第一、三、四象限∴k>0,b<0∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.【题目点拨】根的判别式二、填空题(本大题共6个小题,每小题3分,共18分)11、①②【解题分析】

过P作PM⊥y轴于M,PN⊥x轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.【题目详解】过P作PM⊥y轴于M,PN⊥x轴于N

∵P(1,1),

∴PN=PM=1.

∵x轴⊥y轴,

∴∠MON=∠PNO=∠PMO=90°,

∴∠MPN=360°-90°-90°-90°=90°,则四边形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPA=∠APB=90°,

∴∠MPA=∠NPB.

∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,

∴△MPA≌△NPB,

∴PA=PB,故①正确.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

当OA=OB时,OA=OB=1,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.

∵△MPA≌△NPB,

∴四边形OAPB的面积=四边形AONP的面积+△PNB的面积=四边形AONP的面积+△PMA的面积=正方形PMON的面积=2.

∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.

,∵∠AOB+∠APB=180°,

∴点A、O、B、P共圆,且AB为直径,所以

AB≥OP,故④错误.

故答案为:①②.【题目点拨】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,关键是推出AM=BN和推出OA+OB=OM+ON12、十二【解题分析】

首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【题目详解】∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为十二.【题目点拨】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.13、.【解题分析】

将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【题目详解】直接提取公因式即可:.14、50(1﹣x)2=1.【解题分析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.15、1【解题分析】

根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.【题目详解】解:∵a,b为两个连续的整数,且a<<b,∴a=2,b=3,∴ba=32=1.故答案为1.【题目点拨】此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,16、5【解题分析】由题意得,,.∴原式三、解答题(共8题,共72分)17、解:(1)图见解析;(2)证明见解析.【解题分析】

(1)根据角平分线的作法作出∠ABC的平分线即可.(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.【题目详解】解:(1)如图所示:(2)证明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四边形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四边形ABFE为菱形.18、(1)50;(2)①6;②1【解题分析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;②当点P与M重合时,△PBC周长的值最小,于是得到结论.试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.19、(1)证明见解析;(2).【解题分析】

(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【题目详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积20、(1)见解析;(2).【解题分析】分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.详解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.设⊙O的半径为R,则OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.21、30米【解题分析】

设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.【题目详解】由题意得,∠ABD=30°,∠ACD=45°,BC=60m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=,∴,∴米,答:山高AD为30米.【题目点拨】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22、(1);(2).【解题分析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【题目详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论