2024届云南大附属中学数学八上期末质量跟踪监视试题含解析_第1页
2024届云南大附属中学数学八上期末质量跟踪监视试题含解析_第2页
2024届云南大附属中学数学八上期末质量跟踪监视试题含解析_第3页
2024届云南大附属中学数学八上期末质量跟踪监视试题含解析_第4页
2024届云南大附属中学数学八上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南大附属中学数学八上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列运算不正确的是()A.x2•x3=x5 B.(x2)3=x6 C.x3+x3=2x6 D.(﹣2x)3=﹣8x32.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.33.如图,分别给出了变量y与x之间的对应关系,y不是x的函数的是()A. B. C. D.4.在根式①

④中最简二次根式是()A.①② B.③④ C.①③ D.①④5.一个直角三角形的三边长为三个连续偶数,则它的三边长分别是()A.2,4,6 B.4,6,8 C.3,4,5 D.6,8,106.如图所示,已知∠1=∠2,下列添加的条件不能使△ADC≌△CBA的是A. B. C. D.7.如图,是中边的垂直平分线,若厘米,厘米,则的周长为()A. B. C. D.8.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为()A.+= B.-= C.+1=﹣ D.+1=+9.若是完全平方式,则的值是()A. B. C.+16 D.-1610.下列各式从左到右的变形中,是因式分解的是()A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+) D.2x2﹣8y2=2(x+2y)(x﹣2y)二、填空题(每小题3分,共24分)11.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=2,[-2.5]=-2.现对82进行如下操作:82[]=9[]=2[]=2,这样对82只需进行2次操作后变为2,类似地,对222只需进行___________次操作后变为2.12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件________能用SAS说明△ABC≌△DEF.13.已知,则=__________.14.在中,是中线,是高,若,,则的面积__________.15.分解因式:ax2+2ax+a=____________.16.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么4※8=________.17.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是__________18.已知a+b=3,ab=2,则a2b+ab2=_______.三、解答题(共66分)19.(10分)某市计划进行一项城市美化工程,已知乙队单独完成此项工程比甲队单独完成此项工程多用10天,且甲队单独施工30天和乙队单独施工45天的工作量相同.(1)甲、乙两队单独完成此项工作各需多少天?(2)已知甲队每天的施工费用为8000元,乙队每天的施工费用为6000元.为了缩短工期,指挥部决定该工程由甲、乙两队一起完成.则该工程施工费用是多少元?20.(6分)甲、乙两车分别从两地同时出发,沿同一公路相向而行,开往两地.已知甲车每小时比乙车每小时多走,且甲车行驶所用的时间与乙车行驶所用的时间相同.(1)求甲、乙两车的速度各是多少?(2)实际上,甲车出发后,在途中因车辆故障耽搁了20分钟,但仍比乙车提前1小时到达目的地.求两地间的路程是多少?21.(6分)列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.22.(8分)课本56页中有这样一道题:证明.如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等,(1)小玲在思考这道题时.画出图形,写出已知和求证.已知:在和中,,,是边上的中线,是边上的中线,.求证:.请你帮她完成证明过程.(2)小玲接着提出了两个猜想:①如果两个三角形有两条边和第三边上的中线分别相等,那么这两个三角形全等;②如果两个三角形有两条边和第三边上的高分别相等,那么这两个三角形全等;请你分别判断这两个猜想是否正确,如果正确,请予以证明,如果不正确,请举出反例.23.(8分)某服装厂接到一份加工件校服的订单.在实际生产之前,接到学校要求需提前供货.该服装厂决定提高加工效率,实际每天加工的件数是原计划的倍,结果提前天完工,求原计划每天加工校服的件数.24.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10斤A级别和20斤B级别茶叶的利润为4000元,销售20斤A级别和10斤B级别茶叶的利润为3500元(1)分别求出每斤A级别茶叶和每斤B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200斤用于出口.设购买A级别茶叶a斤(70≤a≤120),销售完A、B两种级别茶叶后获利w元.①求出w与a之间的函数关系式;②该经销商购进A、B两种级别茶叶各多少斤时,才能获取最大的利润,最大利润是多少?25.(10分)已知:如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,EF∥AB交AC于点F.求证:△FEC是等腰三角形.26.(10分)如图,在平面直角坐标系中,过点的直线与直线相交于点,动点在线段和射线上运动.(1)求直线的解析式.(2)求的面积.(3)是否存在点,使的面积是的面积的?若存在求出此时点的坐标;若不存在,说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】A.∵x2•x3=x5,故正确;B.∵(x2)3=x6,故正确;C.∵x3+x3=2x3,故不正确;D.∵(﹣2x)3=﹣8x3,故正确;故选C.2、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.3、B【分析】根据函数的定义判断即可.【详解】A、C、D中y均是x的函数,不符合题意;B中每一个自变量x对应两个y值,故y不是x的函数,符合题意.故选B.【点睛】本题考查的是函数的定义,解答本题的关键是熟练掌握函数的定义:对于两个变量x、y,x每取一个值,y都有唯一的值与之对应;注意要强调“唯一”.4、C【分析】根据最简二次根式的定义逐个判断即可.【详解】①是最简二次根式;②,被开方数含分母,不是最简二次根式;③是最简二次根式;④,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.【点睛】本题考查了最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.5、D【分析】根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理即可解答.【详解】解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理,得

(x-2)2+x2=(x+2)2,

x2-4x+4+x2=x2+4x+4,

x2-8x=0,

x(x-8)=0,

解得x=8或0(0不符合题意,应舍去),

所以它的三边是6,8,1.故选:D.【点睛】本题考查了一元二次方程的应用及勾股定理,注意连续偶数的特点,能够熟练解方程.6、B【分析】根据全等三角形的判定的方法进行解答即可.【详解】A、∵AB∥DC,∴∠BAC=∠DCA,由,得出△ADC≌△CBA,不符合题意;B、由AB=CD,AC=CA,∠2=∠1无法得出△ADC≌△CBA,符合题意;C、由得出△ADC≌△CBA,不符合题意;D、由得出△ADC≌△CBA,不符合题意;故选C.【点睛】此题主要考查了全等三角形的判定,关键是由已知得到两个已知条件,再根据全等三角形的判定找出能使△ADC≌△CBA的另一个条件.7、B【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【详解】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AB=AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选:B.【点睛】本题考查线段垂直平分线的性质,是重要考点,难度较易,掌握相关知识是解题关键.8、C【分析】设原计划速度为x千米/小时,根据“一运送物资车开往距离出发地180千米的目的地”,则原计划的时间为:,根据“出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶”,则实际的时间为:+1,根据“实际比原计划提前40分钟到达目的地”,列出关于x的分式方程,即可得到答案.【详解】设原计划速度为x千米/小时,根据题意得:原计划的时间为:,实际的时间为:+1,∵实际比原计划提前40分钟到达目的地,∴+1=﹣,故选C.【点睛】本题考查了由实际问题抽象出分式方程,正确找出等量关系,列出分式方程是解题的关键.9、B【分析】根据完全平方公式:,即可得出结论.【详解】解:∵是完全平方式,∴解得:故选B.【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.10、D【解析】A.没把一个多项式转化成几个整式积的形式,故A错误;B.是整式的乘法,故B错误;C.没把一个多项式转化成几个整式积的形式,故C错误;D.把一个多项式转化成几个整式积的形式,故D正确;故选D.二、填空题(每小题3分,共24分)11、2【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.【详解】解:∴对222只需进行2次操作后变为2,故答案为:2.【点睛】本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.12、AC=DF【分析】根据SAS进行判断即可解答.【详解】添加AC=DF(答案不唯一).证明:因为FB=CE,AC∥DF,所以BF-CF=EC-CF,∠ACB=∠DFE(内错角相等)所以BC=EF.在△ABC和△DEF中,,所以△ABC≌△DEF.【点睛】此题考查全等三角形的判定,平行线的性质,解题关键在于掌握判定定理.13、1【分析】逆用同底数幂的乘法法则,即am+n=am·an解答即可.【详解】解:∵2m=5,2n=3,

∴2m+n=2m•2n=5×3=1.

故答案为:1.【点睛】本题考查了同底数幂的乘法法则的逆运用,灵活运用公式是解题的关键.14、2【分析】根据中线的定义求出DC的长,再根据三角形的面积公式即可得出结论.【详解】∵AD是中线,∴BD=DC=BC=1.△ADC的面积=DC•AH=×1×6=2.故答案为:2.【点睛】本题查考了三角形的中线和三角形的面积公式.掌握三角形中点的性质是解答本题的关键.15、a(x+1)1【解析】ax1+1ax+a=a(x1+1x+1)=a(x+1)1.16、【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得4※8=故答案为:.【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.17、1.【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B,

根据两点之间线段最短,

(1)如图,BD=10+5=15,AD=20,

由勾股定理得:AB====1.(2)如图,BC=5,AC=20+10=30,

由勾股定理得,AB====5.

(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:

∵长方体的宽为10,高为20,点B离点C的距离是5,

∴BD=CD+BC=20+5=1,AD=10,

在直角三角形ABD中,根据勾股定理得:

∴AB===5;

由于1<5<5,故答案为1.【点睛】本题考查两点之间线段最短,关键是将长方体展开,根据两点之间线段最短,运用勾股定理解答.18、6【分析】先对a2b+ab2进行因式分解,a2b+ab2=ab(a+b),再将值代入即可求解.【详解】∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故答案是:6.【点睛】考查了提公因式法分解因式,解题关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.三、解答题(共66分)19、(1)甲单独完成需20天,乙单独完成需30天;(2)该工程施工费用是168000元.【分析】(1)设甲单独完成需天,根据“甲队单独施工30天和乙队单独施工45天的工作量相同”列方程即可求出结论;(2)设甲、乙合做完成需要天,利用“甲乙合做的工作量=1”列出方程,求出y,即可求出结论.【详解】解:(1)设甲单独完成需天,依题意得解得:=20经检验=20是原方程的解乙单独完成需20+10=30天答:甲单独完成需20天,乙单独完成需30天.(2)设甲、乙合做完成需要天,依题意得解得:=12总费用为:(8000+6000)×12=168000(元)答:该工程施工费用是168000元.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.20、(1)甲、乙两车的速度分别是、;(2)间的路程是.【分析】(1)设甲车的速度是,则乙车的速度是,再根据“甲车行驶350km所用的时间与乙车行驶250km所用的时间相同”列出出分式方程,解方程即可;(2)设间的路程是,根据“甲车出发后,在途中因车辆故障耽搁了20分钟,但仍比乙车提前1小时到达目的地”列出方程,解方程即可.【详解】(1)设甲车的速度是,则乙车的速度是,由题意列方程解得,经检验是原方程的解,则,所以,甲、乙两车的速度分别是、;(2)设间的路程是,由题意列方程解得,所以,间的路程是.【点睛】考查了方式方程的应用,解题关键将实际问题转换成方程问题和找出题中的等量关系.21、(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【分析】(1)根据题意可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;

(2)设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成2400个零件的生产任务,列出方程求解即可.【详解】(1)解:设原计划每天生产的零件x个,由题意得,得:x=2400经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数480人.【点睛】本题考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、(1)见解析;(2)命题①正确,证明见解析;命题②不正确,反例见解析【分析】(1)先利用“SSS”证明,推出,再根据“SAS”即可证明;(2)①延长到,使,连接,延长到,使,连接.先利用“SAS”证明,推出,,同理推出,,再利用“SSS”证明,即可根据“SAS”证明结论正确;②如图3、图4,一个是锐角三角形,一个是钝角三角形,举出反例,即可得到结论不成立.【详解】(1)∵是边上的中线,∴,同理,∵,∴,∵,,∴,∴,∵,,∴;(2)命题①正确,已知如图1、图2,在和中,,,是边上的中线,是边上的中线,且.求证:.证明:延长到,使,连接,延长到,使,连接.∵是边上的中线,∴BD=DC,∵∴(SAS),∴,,同理:,,∵,.∵,,,∴,,∴,∴,,∴,∴,即,∵,,∴;命题②不正确,如图3、图4,在和中,,,边上的高线为,边上的高线为,,与不全等.【点睛】本题考查了全等三角形的性质和判定,作出常用辅助线,熟练应用全等三角形的判定方法是解题关键.23、100【分析】设原计划每天加工校服x件,则实际每天加工校服1.2x件,根据工作时间=工作总量工作效率,结合实际比原计划提前5天完工,即可得出关于x的分式方程,解之经检验即可得出结论.【详解】解:设原计划每天加工校服x件,则实际每天加工校服1.2x件依题意得解得经检验,是分式方程的解,且符合题意答:原计划每天加工校服100件.【点睛】本题考查了分式方程的实际应用,掌握分式方程的性质以及解法是解题的关键.24、(1)一斤A级别的茶叶的销售利润为100元,一斤B级别茶叶的销售利润为150元;(2)①w=-50a+1;②购买A级别茶叶70斤,购买B级别茶叶2斤时,才能获取最大的利润,最大利润是26500元.【分析】(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;

(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.【详解】解:(1)设一斤A级别的茶叶的销售利润为x元,一斤B级别茶叶的销售利润为y元由题意得:解得:答:一斤A级别的茶叶的销售利润为100元,一斤B级别茶叶的销售利润为150元.(2)①由题意得,w=100a+150(200-a)=-50a+1.②∵-50<0∴w的值随a值的增大而减小∵70≤a≤120,∴当a=70时,w取得最大值,此时w=26500,200-70=2.所以,购买A级别茶叶70斤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论