山东省潍坊实验中学2024届高考数学试题考前最后一卷预测卷(一)_第1页
山东省潍坊实验中学2024届高考数学试题考前最后一卷预测卷(一)_第2页
山东省潍坊实验中学2024届高考数学试题考前最后一卷预测卷(一)_第3页
山东省潍坊实验中学2024届高考数学试题考前最后一卷预测卷(一)_第4页
山东省潍坊实验中学2024届高考数学试题考前最后一卷预测卷(一)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊实验中学2024届高考数学试题考前最后一卷预测卷(一)考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得2.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元3.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.4.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是()A.AC⊥BE B.EF平面ABCDC.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值5.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.6.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.7.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.8.已知集合,集合,则A. B.或C. D.9.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A. B. C. D.10.函数f(x)=的图象大致为()A. B.C. D.11.已知复数(为虚数单位)在复平面内对应的点的坐标是()A. B. C. D.12.己知集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足递推公式,且,则___________.14.若函数恒成立,则实数的取值范围是_____.15.已知,,是平面向量,是单位向量.若,,且,则的取值范围是________.16.已知,,且,则最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.18.(12分)设数列是等差数列,其前项和为,且,.(1)求数列的通项公式;(2)证明:.19.(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.(Ⅰ)若线段的中点坐标为,求直线的方程;(Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值.20.(12分)已知函数.(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:.21.(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.22.(10分)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【题目详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.【题目点拨】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.2、D【解题分析】

用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【题目详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【题目点拨】本小题主要考查图表分析,考查收益的计算方法,属于基础题.3、A【解题分析】

根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【题目详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【题目点拨】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.4、D【解题分析】

A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假.【题目详解】A.因为,所以平面,又因为平面,所以,故正确;B.因为,所以,且平面,平面,所以平面,故正确;C.因为为定值,到平面的距离为,所以为定值,故正确;D.当,,取为,如下图所示:因为,所以异面直线所成角为,且,当,,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【题目点拨】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.5、B【解题分析】

将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【题目详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【题目点拨】本题主要考查了枚举法求古典概型的方法,属于基础题型.6、C【解题分析】

由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【题目详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【题目点拨】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.7、D【解题分析】

设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【题目详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【题目点拨】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.8、C【解题分析】

由可得,解得或,所以或,又,所以,故选C.9、C【解题分析】由题意可得双曲线的渐近线的方程为.∵为线段的中点,∴,则为等腰三角形.∴由双曲线的的渐近线的性质可得∴∴,即.∴双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).10、D【解题分析】

根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【题目详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【题目点拨】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.11、A【解题分析】

直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【题目详解】解:,在复平面内对应的点的坐标是.故选:A.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.12、C【解题分析】

先化简,再求.【题目详解】因为,又因为,所以,故选:C.【题目点拨】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2020【解题分析】

可对左右两端同乘以得,依次写出,,,,累加可得,再由得,代入即可求解【题目详解】左右两端同乘以有,从而,,,,将以上式子累加得.由得.令,有.故答案为:2020【题目点拨】本题考查数列递推式和累加法的应用,属于基础题14、【解题分析】

若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得。【题目详解】由题意得,只要即可,,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,,若恒成立,则,解得;当时,恒成立;当时,,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【题目点拨】本题考查恒成立条件下,求参数的取值范围,是常考题型。15、【解题分析】

先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解.【题目详解】由是单位向量.若,,设,则,,又,则,则,则,又,所以,(当或时取等)即的取值范围是,,故答案为:,.【题目点拨】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平.16、【解题分析】

首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【题目详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【题目点拨】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)利用线面平行的定义证明即可(2)取的中点,并分别连接,,然后,证明相应的线面垂直关系,分别以,,为轴,轴,轴建立空间直角坐标系,利用坐标运算进行求解即可【题目详解】证明:(1)在图1中,连接.又,分别为,中点,所以.即图2中有.又平面,平面,所以平面.解:(2)在图2中,取的中点,并分别连接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分别以,,为轴,轴,轴建立如图所示的空间直角坐标系,则,,,,,所以,,.设平面的一个法向量,则,取,则,,所以.又,所以.分析知,直线与平面所成角的正弦值为.【题目点拨】本题考查线面平行的证明以及利用空间向量求解线面角问题,属于基础题18、(1)(2)见解析【解题分析】

(1)设数列的公差为,由,得到,再结合题干所给数据得到公差,即可求得数列的通项公式;(2)由(1)可得,再利用放缩法证明不等式即可;【题目详解】解:(1)设数列的公差为,∵,∴,∴,∴.(2)∵,∴,∴.【题目点拨】本题考查等差数列的通项公式的计算,放缩法证明数列不等式,属于中档题.19、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)根据点差法,即可求得直线的斜率,则方程即可求得;(Ⅱ)设出直线方程,联立椭圆方程,利用韦达定理,根据,即可求得参数的值.【题目详解】(1)设,,则两式相减,可得.(*)因为线段的中点坐标为,所以,.代入(*)式,得.所以直线的斜率.所以直线的方程为,即.(Ⅱ)设直线:(),联立整理得.所以,解得.所以,.所以,所以.所以.因为,所以.【题目点拨】本题考查中点弦问题的点差法求解,以及利用代数与几何关系求直线方程,涉及韦达定理的应用,属中档题.20、(1)极大值,极小值;(2)详见解析.【解题分析】

首先确定函数的定义域和;(1)当时,根据的正负可确定单调性,进而确定极值点,代入可求得极值;(2)通过分析法可将问题转化为证明,设,令,利用导数可证得,进而得到结论.【题目详解】由题意得:定义域为,,(1)当时,,当和时,;当时,,在,上单调递增,在上单调递减,极大值为,极小值为.(2)要证:,即证:,即证:,化简可得:.,,即证:,设,令,则,在上单调递增,,则由,从而有:.【题目点拨】本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等式证明的关键是能够将多个变量的问题转化为一个变量的问题,通过构造函数的方式将问题转化为函数最值的求解问题.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论