版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省厦门六中学九年级数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.二次函数的图像如图所示,下面结论:①;②;③函数的最小值为;④当时,;⑤当时,(、分别是、对应的函数值).正确的个数为()A. B. C. D.2.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A. B. C. D.3.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2 B.3 C.4 D.54.下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是()A.① B.② C.③ D.④5.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或16.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度7.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.118.已知x=﹣1是一元二次方程x2+mx+3=0的一个解,则m的值是()A.4 B.﹣4 C.﹣3 D.39.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(
)A.甲 B.乙 C.丙 D.丁10.的值等于().A. B. C. D.1二、填空题(每小题3分,共24分)11.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.12.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.13.点(5,﹣)关于原点对称的点的坐标为__________.14.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.15.已知二次函数y=ax2-bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是_________;若a+b的值为非零整数,则b的值为_________.16.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.17.如图,有一斜坡,坡顶离地面的高度为,斜坡的倾斜角是,若,则此斜坡的为____m.18.一元二次方程5x2﹣1=4x的一次项系数是______.三、解答题(共66分)19.(10分)如图,在中,于点.若,求的值.20.(6分)已知点M(2,a)在反比例函数y=(k≠0)的图象上,点M关于原点中心对称的点N在一次函数y=﹣2x+8的图象上,求此反比例函数的解析式.21.(6分)如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=10,AD=8,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.22.(8分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于1.23.(8分)一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax1+bx﹣1a(其中a≠0).已知当x=0时,h=1;当x=10时,h=1.(1)求h关于x的函数表达式;(1)求斜抛物体的最大高度和达到最大高度时的水平距离.24.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.25.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.26.(10分)阅读理解,我们已经学习了点和圆、直线和圆的位置关系以及各种位置关系的数量表示,如下表:类似于研究点和圆、直线和圆的位置关系,我们也可以用两圆的半径和两圆的圆心距(两圆圆心的距离)来刻画两圆的位置关系.如果两圆的半径分别为和(r1>r2),圆心距为d,请你通过画图,并利用d与和之间的数量关系探索两圆的位置关系.图形表示(圆和圆的位置关系)数量表示(圆心距d与两圆的半径、的数量关系)
参考答案一、选择题(每小题3分,共30分)1、C【分析】由抛物线开口方向可得到a>0;由抛物线过原点得c=0;根据顶点坐标可得到函数的最小值为-3;根据当x<0时,抛物线都在x轴上方,可得y>0;由图示知:0<x<2,y随x的增大而减小;【详解】解:①由函数图象开口向上可知,,故此选项正确;②由函数的图像与轴的交点在可知,,故此选项正确;③由函数的图像的顶点在可知,函数的最小值为,故此选项正确;④因为函数的对称轴为,与轴的一个交点为,则与轴的另一个交点为,所以当时,,故此选项正确;⑤由图像可知,当时,随着的值增大而减小,所以当时,,故此选项错误;其中正确信息的有①②③④.故选:C.【点睛】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=,;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.2、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.3、B【分析】根据二次函数y=ax2+bx+c的图象与性质依次进行判断即可求解.【详解】解:∵抛物线开口向下,∴a<0;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴的一个交点坐标是(3,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标是(﹣1,0),∴x=﹣2时,y<0,∴4a﹣2b+c<0,所以③错误;∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x<3时,y>0,所以④正确;∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正确.故选B.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.4、D【分析】根据确定圆的条件、圆心角、弧、弦的关系定理、垂径定理、圆内接四边形的性质进行判断即可得到正确结论.【详解】解:①不共线的三点确定一个圆,故①表述不正确;②在同圆或等圆中,相等的圆心角所对的弧相等,故②表述不正确;③平分弦(不是直径)的直径垂直于弦,故③表述不正确;④圆内接四边形对角互补,故④表述正确.故选D.【点睛】本题考查了圆心角、弧、弦的关系定理,垂径定理的推论,半圆与弧的定义,圆内接四边形的性质,熟练掌握定义与性质是解题的关键.5、D【分析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.6、D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.7、A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.8、A【分析】根据一元二次方程的解的定义,把x=﹣1代入方程得1﹣m+2=0,然后解关于m的一次方程即可.【详解】解:把x=﹣1代入x2+mx+3=0得1﹣m+3=0,解得m=1.故选:A.【点睛】本题考查的是一元二次方程中含有参数的解,只需要把x的值代入方程即可求出.9、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.10、C【分析】根据特殊三角函数值来计算即可.【详解】故选:C.【点睛】本题考查特殊三角函数值,熟记特殊三角函数值是解题的关键.二、填空题(每小题3分,共24分)11、m>1【解析】∵反比例函数的图象在其每个象限内,y随x的增大而减小,∴>0,解得:m>1,故答案为m>1.12、6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.13、(-5,)【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【详解】∵两点关于原点对称,∴横坐标为-5,纵坐标为,故点P(5,−)关于原点对称的点的坐标是:(-5,).故答案为:(-5,).【点睛】此题主要考查了关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.14、点B或点E或线段BE的中点.【分析】由旋转的性质分情况讨论可求解;【详解】解:∵正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,∴若点A与点E是对称点,则点B是旋转中心是点B;若点A与点D是对称点,则点B是旋转中心是BE的中点;若点A与点E是对称点,则点B是旋转中心是点E;故答案为:点B或点E或线段BE的中点.【点睛】本题考查了旋转的性质,正方形的性质,利用分类讨论是本题的关键.15、【分析】根据题意可得a<0,再由可以得到b>0,把(1,0)函数得a−b+2=0,导出b和a的关系,从而解出a的范围,再根据a+b的值为非零整数的限制条件,从而得到a,b的值.【详解】依题意知a<0,,a−b+2=0,故b>0,且b=a+2,a=b−2,a+b=a+a+2=2a+2,∴a+2>0,∴−2<a<0,∴−2<2a+2<2,∵a+b的值为非零实数,∴a+b的值为−1,1,∴2a+2=−1或2a+2=1,或,∵b=a+2,或16、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.17、1.【分析】由三角函数定义即可得出答案.【详解】解:∵,,∴;故答案为:1.【点睛】本题考查了解直角三角形的应用;熟练掌握三角函数定义是解题的关键.18、-4【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:∵5x2﹣1=4x,方程整理得:5x2﹣4x﹣1=0,则一次项系数是﹣4,故答案为:﹣4【点睛】本题考查了一元二次方程的一般形式,解答本题要通过移项,转化为一般形式,注意移项时符号的变化.三、解答题(共66分)19、【分析】(1)要求的值,应该要求CD的长.证得∠A=∠BCD,然后有tanA=tan∠BCD,表示出两个正切函数后可求得CD的长,于是可解.【详解】解:∵∠ACB=90°,CD⊥AB于点D,
∴∠A+∠ACD=∠ACD+∠BCD=90°,
∴∠A=∠BCD,∴tanA=tan∠BCD,∴,∴,∴CD=,∴tanA=.【点睛】本题考查了直角三角形三角函数的定义,利用三角函数构建方程求解有时比用相似更简便更直接.20、y=﹣【分析】由点M与点N关于原点中心对称,可表示出点N的坐标,代入一次函数的关系式,可求得a的值,确定点M的坐标,再代入反比例函数的关系式求出k的值即可.【详解】∵点M(2,a),点M与点N关于原点中心对称,∴N(﹣2,﹣a)代入y=﹣2x+8得:﹣a=4+8,∴a=﹣12,∴M(2,﹣12)代入反比例函数y=得,k=﹣24,∴反比例函数的解析式为y=﹣.【点睛】本题考查了一次函数、反比例函数图象上点的坐标特征,把点的坐标代入相应的函数关系式是常用的方法.21、(1)见解析;(2)AC的长为4;(3)AC=BC+EC,理由见解析【分析】(1)连接OC,由直径所对圆周角是直角可得∠ACB=90°,由OC=OB得出∠OCB=∠B,由因为∠DCA=∠B,从而可得∠DCA=∠OCB,即可得出∠DCO=90°;(2)由题意证明△ACD∽△ABC,根据对应边成比例列出等式求出AC即可;(3)在AC上截取AF使AF=BC,连接EF、BE,通过条件证明△AEF≌△BEC,根据性质推出△EFC为等腰直角三角形,即可证明AC、EC、BC的数量关系.【详解】(1)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切线;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴,即,∴AC=4,即AC的长为4;(3)解:AC=BC+EC;理由如下:在AC上截取AF使AF=BC,连接EF、BE,如图2所示:∵AB是直径,∴∠ACB=∠AEB=90°,∵∠DAB=45°,∴△AEB为等腰直角三角形,∴∠EAB=∠EBA=∠ECA=45°,AE=BE,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴EF=CE,∠AFE=∠BCE=∠ACB+∠ECA=90°+45°=135°,∴∠EFC=180°﹣∠AFE=180°﹣135°=45°,∴∠EFC=∠ECF=45°,∴△EFC为等腰直角三角形.∴CF=EC,∴AC=AF+CF=BC+EC.【点睛】本题考查圆与三角形的结合,关键在于牢记基础性质,利用三角形的相似对应边以及三角形的全等进行计算.22、(1);(2).【分析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率.【详解】第二次第一次6﹣276(6,6)(6,﹣2)(6,7)﹣2(﹣2,6)(﹣2,﹣2)(﹣2,7)7(7,6)(7,﹣2)(7,7)(1)P(两数相同)=.(2)P(两数和大于1)=.【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率.23、(1)h=﹣x1+10x+1;(1)斜抛物体的最大高度为17,达到最大高度时的水平距离为2.【分析】(1)将当x=0时,h=1;当x=10时,h=1,代入解析式,可求解;(1)由h=−x1+10x+1=−(x−2)1+17,即可求解.【详解】(1)∵当x=0时,h=1;当x=10时,h=1.∴解得:∴h关于x的函数表达式为:h=﹣x1+10x+1;(1)∵h=﹣x1+10x+1=﹣(x﹣2)1+17,∴斜抛物体的最大高度为17,达到最大高度时的水平距离为2.【点睛】本题考查了二次函数的应用,求出二次函数的解析式是本题的关键.24、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).【解析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;
利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).25、(1)反比例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延续护理背景下护士角色与医疗政策的互动案例
- 康复机器人与运动医学的协同治疗模式
- 应急状态下中西医结合的个体化用药方案
- 序贯治疗中免疫激动剂的使用策略
- 干细胞联合基因治疗优化脑瘫疗效策略
- 干细胞治疗安全性数据管理
- 荆职院护理学基础课件05护理专业与法律
- 寻乌交通安全培训课件
- 寺庙消防宣传培训课件
- 寮步安全生产培训学费表课件
- 核生化应急救援中心火灾预案
- 2026天津市滨海新区事业单位招聘25人备考题库必考题
- T∕GDAM 005.1-2025 实验室仪器设备管理规范 第1部分:总则
- 2025年全面质量管理体系建设项目可行性研究报告
- 光疗课件教学课件
- 北师大版二上《参加欢乐购物活动》(课件)
- 基坑土方开挖专项施工方案(完整版)
- 招标人主体责任履行指引
- 健康管理师考试题库及答案题库大全
- 雨课堂学堂云在线《中国传统艺术-篆刻、书法、水墨画体验与欣赏(哈工 )》单元测试考核答案
- 公墓骨灰安葬协议书
评论
0/150
提交评论