2023年山东省枣庄市峄城区底阁镇数学九上期末统考试题含解析_第1页
2023年山东省枣庄市峄城区底阁镇数学九上期末统考试题含解析_第2页
2023年山东省枣庄市峄城区底阁镇数学九上期末统考试题含解析_第3页
2023年山东省枣庄市峄城区底阁镇数学九上期末统考试题含解析_第4页
2023年山东省枣庄市峄城区底阁镇数学九上期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年山东省枣庄市峄城区底阁镇数学九上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点A、B、C在⊙O上,∠ACB=130°,则∠AOB的度数为()A.50° B.80° C.100° D.110°2.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么()A.y1>y2>0 B.y2>y1>0 C.y1<y2<0 D.y2<y1<03.如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是A.14 B.12 C.9 D.74.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()A. B.C. D.5.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3 D.y=2(x﹣2)2+36.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56° B.62° C.68° D.78°7.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则cosB的值()A. B. C. D.8.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有名学生,那么所列方程为()A. B.C. D.9.已知点是线段的黄金分割点,且,,则长是()A. B. C. D.10.如图,在Rt△ABC中,∠BAC=90º,AH是高,AM是中线,那么在结论①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中错误的个数有()A.0个 B.1个 C.2个 D.3个二、填空题(每小题3分,共24分)11.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.12.在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,,那么与的相似比为__________.13.分式方程的解为______________.14.如图,将Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是___________.15.一元二次方程2x2+3x+1=0的两个根之和为__________.16.如图,是的直径,点和点是上位于直径两侧的点,连结,,,,若的半径是,,则的值是_____________.17.已知是,则的值等于____________.18.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.三、解答题(共66分)19.(10分)近年来,无人机航拍测量的应用越来越广泛.如图,无人机从A处观测得某建筑物顶点O时俯角为30°,继续水平前行10米到达B处,测得俯角为45°,已知无人机的水平飞行高度为45米,则这栋楼的高度是多少米?(结果保留根号)20.(6分)用一段长为28m的铁丝网与一面长为8m的墙面围成一个矩形菜园,为了使菜园面积尽可能的大,给出了甲、乙两种围法,请通过计算来说明这个菜园长、宽各为多少时,面积最大?最大面积是多少?21.(6分)已知关于x的方程x2+(2m+1)x+m(m+1)=1.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=1,求代数式m2+m﹣5的值.22.(8分)定义:如图1,在中,把绕点逆时针旋转()并延长一倍得到,把绕点顺时针旋转并延长一倍得到,连接.当时,称是的“倍旋三角形”,边上的中线叫做的“倍旋中线”.特例感知:(1)如图1,当,时,则“倍旋中线”长为______;如图2,当为等边三角形时,“倍旋中线”与的数量关系为______;猜想论证:(2)在图3中,当为任意三角形时,猜想“倍旋中线”与的数量关系,并给予证明.23.(8分)如图,在平面直角坐标系中,矩形的顶点,,的坐标分别,,,以为顶点的抛物线过点.动点从点出发,以每秒个单位的速度沿线段向点匀速运动,过点作轴,交对角线于点.设点运动的时间为(秒).(1)求抛物线的解析式;(2)若分的面积为的两部分,求的值;(3)若动点从出发的同时,点从出发,以每秒1个单位的速度沿线段向点匀速运动,点为线段上一点.若以,,,为顶点的四边形为菱形,求的值.24.(8分)如图,是直径AB所对的半圆弧,点C在上,且∠CAB=30°,D为AB边上的动点(点D与点B不重合),连接CD,过点D作DE⊥CD交直线AC于点E.小明根据学习函数的经验,对线段AE,AD长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点D在AB上的不同位置,画图、测量,得到线段AE,AD长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9AE/cm0.000.410.771.001.151.000.001.004.04…AD/cm0.000.501.001.412.002.453.003.213.50…在AE,AD的长度这两个量中,确定_______的长度是自变量,________的长度是这个自变量的函数;(2)在下面的平面直角坐标系中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当AE=AD时,AD的长度约为________cm(结果精确到0.1).25.(10分)已知是的反比例函数,下表给出了与的一些值:141(1)写出这个反比例函数表达式;(2)将表中空缺的值补全.26.(10分)用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cmB.6cm×4.5cmC.7cm×4cmD.7cm×4.5cm

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.2、A【详解】∵点P1(1,y1)和P2(2,y2)在反比例函数的图象上,∴y1=1,y2=,∴y1>y2>1.故选A.3、D【分析】根据切线长定理,可以证明圆的外切四边形的对边和相等,由此即可解决问题.【详解】∵AB、BC、CD、DA都是⊙O的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选D.【点睛】本题考查切线的性质、切线长定理等知识,解题的关键是证明圆的外切四边形的对边和相等,属于中考常考题型.4、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),

可设新抛物线的解析式为:y=(x-h)1+k,

代入得:y=(x+1)1-1.

∴所得图象的解析式为:y=(x+1)1-1;

故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.5、C【解析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+1.故选:C.【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx+c,顶点式:y=a(x-h)2+k;两根式:y=6、C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.7、B【分析】根据勾股定理计算出BC长,再根据余弦定义可得答案.【详解】如图所示:∵AC=4,AB=5,∴BC===3,∴cosB==.故选:B.【点睛】考查了锐角三角函数,解题关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.8、D【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,

∴全班共送:(x-1)x=1,

故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.9、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知∴故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.10、B【分析】根据直角三角形斜边上的中线性质和等腰三角形的性质得出∠B=∠BAM,根据已知条件判断∠B=∠MAH不一定成立;根据三角形的内角和定理及余角的性质得出∠B=∠CAH.【详解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中线,∴AM=BM,∴∠B=∠BAM,①正确;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②错误;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正确.故选:B.【点睛】本题主要考查对直角三角形斜边上的中线性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质进行推理是解此题的关键.二、填空题(每小题3分,共24分)11、【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.12、2【分析】分别求出OA和OA1的长度即可得出答案.【详解】根据题意可得,,,所以相似比=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.13、;【解析】方程两边都乘以(x+2)(x-2)得到x(x+2)-2=(x+2)(x-2),解得x=-1,然后进行检验确定分式方程的解.【详解】解:去分母得x(x+2)-2=(x+2)(x-2),

解得x=-1,

检验:当x=-1时,(x+2)(x-2)≠0,

所以原方程的解为x=-1.

故答案为x=-1.【点睛】本题考查解分式方程:先去分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解.14、70°【详解】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为70°.【点睛】本题考查旋转的性质,掌握旋转图像对应边相等,对应角相等是本题的解题关键.15、-【解析】试题解析:由韦达定理可得:故答案为:点睛:一元二次方程根与系数的关系:16、【分析】根据题意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【详解】解:∵是的直径,∴∠ADB=90°∴∠ACD=∠ABD∵的半径是,,∴故答案为:【点睛】本题考查的是锐角三角函数值.17、【分析】已知等式左边通分并利用同分母分式的减法法则计算,整理得到a-b与ab的关系,代入原式计算即可求出值.【详解】解:∵,∴则,

故对答案为:.【点睛】此题考查了分式的加减法,以及分式的值,熟练掌握运算法则是解本题的关键.18、100(1+x)2=1.【详解】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为1元,列出关于x的方程100(1+x)2=1.考点:一元二次方程的应用.三、解答题(共66分)19、40﹣5【分析】过O点作OC⊥AB的延长线于C点,垂足为C,设OC=BC=x,则AC=10+x,利用正切值的定义列出x的方程,求出x的值,进而求出楼的高度.【详解】过O点作OC⊥AB的延长线于C点,垂足为C,根据题意可知,∠OAC=30°,∠OBC=45°,AB=10米,AD=45米,在Rt△BCO中,∠OBC=45°,∴BC=OC,设OC=BC=x,则AC=10+x,在Rt△ACO中,,解得:x=5+5,则这栋楼的高度(米).【点睛】本题考查解直角三角形的应用-仰角、俯角的问题以及解直角三角形方法,解题的关键是从实际问题中构造出直角三角形.20、当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.【分析】根据矩形的面积公式甲图列出算式可以直接求面积,乙图设垂直于墙的一边为x,则另一边为(18﹣x)(包括墙长)列出二次函数解析式即可求解.【详解】解:如图甲:设矩形的面积为S,则S=8×(18﹣8)=2.所以当菜园的长、宽分别为10m、8m时,面积为2;如图乙:设垂直于墙的一边长为xm,则另一边为(18﹣1x﹣8)+8=(18﹣x)m.所以S=x(18﹣x)=﹣x1+18x=﹣(x﹣9)1+81因为﹣1<0,当x=9时,S有最大值为81,所以当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.综上:当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.【点睛】本题考查了二次函数的应用,难度一般,关键在于找到等量关系列出方程求解,另外注意配方法求最大值在实际中的应用21、(1)方程总有两个不相等的实数根;(2)-2.【分析】(1)根据一元二次方程的根的判别式即可得出△=1>1,由此即可证出方程总有两个不相等的实数根;

(2)将x=1代入原方程求出m的值,再将m值代入代数式中求值即可.【详解】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m(m+1)=1.∴△=(2m+1)2﹣4m(m+1)=1>1,∴方程总有两个不相等的实数根;(2)∵x=1是此方程的一个根,∴把x=1代入方程中得到m(m+1)=1,把m(m+1)=1代入得m2+m﹣2=-2.【点睛】本题考查了根的判别式及用整体代入法求代数式的值,熟练掌握“当一元二次方程根的判别式△>1时,方程有两个不相等的实数根.”是解题的关键.22、(1)①4,②;(2),证明见解析.【分析】(1)如图1,首先证明,再根据直角三角形斜边上的中线等于斜边的一半即可解决问题;如图2,过点A作,易证,根据易得结论.(2)延长到,使得,连接,易证四边形是平行四边形,再证明得,故可得结论.【详解】(1)如图1,∵,∴∵,∴∴∵BC=4,∴,∵D是的中点,∴AD=;如图2,∵,,∴根据“倍旋中线”知等腰三角形,过A作,垂足为∴,,∵D是等边三角形的边的中点,且∴∴∴(2)结论:理由:如图,延长到,使得,连接,∵,∴四边形是平行四边形∴,∵∴∵∴∴∴【点睛】本题属于几何变换综合题,主要考查相似三角形的判定和性质、直角三角形的性质、等边三角形的判定和性质等知识的综合运用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形解决问题.23、(1);(2)的值为或;(3)的值为或.【分析】(1)运用待定系数法求解;(2)根据已知,证,,可得或;(3)分两种情况:当为菱形的对角线时:由点,的横坐标均为,可得.求直线的表达式为,再求N的纵坐标,得,根据菱形性质得,可得.在中,得.同理,当为菱形的边时:由菱形性质可得,.由于,所以.结合三角函数可得.【详解】解:(1)因为,矩形的顶点,,的坐标分别,,,所以A的坐标是(1,4),可设函数解析式为:把代入可得,a=-1所以,即.(2)因为PE∥CD所以可得.由分的面积为的两部分,可得所以,解得.所以,的值为=(秒).或,解得.所以,的值为.综上所述,的值为或.(3)当为菱形的对角线时:由点,的横坐标均为,可得.设直线AC的解析式为,把A,C的坐标分别代入可得解得所以直线的表达式为.将点的横坐标代入上式,得.即.由菱形可得,.可得.在中,得.解得,,t2=4(舍).当为菱形的边时:由菱形性质可得,.由于,所以.因为.由,得.解得,,综上所述,的值为或.【点睛】考核知识点:相似三角形,二次函数,三角函数.分类讨论,数形结合,运用菱形性质和相似三角形性质或三角函数定义构造方程,再求解是解题关键.24、(1)AD,AE;(2)画图象见解析;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论