2024届湖北省华中学师大附中数学九上期末复习检测试题含解析_第1页
2024届湖北省华中学师大附中数学九上期末复习检测试题含解析_第2页
2024届湖北省华中学师大附中数学九上期末复习检测试题含解析_第3页
2024届湖北省华中学师大附中数学九上期末复习检测试题含解析_第4页
2024届湖北省华中学师大附中数学九上期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省华中学师大附中数学九上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为()A.7 B.14 C.6 D.152.下列方程中是关于x的一元二次方程的是()A. B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=03.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.164.如图,中,点、分别在、上,,,则与四边形的面积的比为()A. B. C. D.5.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=DB,若S△ADE=3,则S四边形DBCE=()A.12 B.15 C.24 D.276.已知反比例函数,下列结论中不正确的是.()A.图象必经过点(3,-2) B.图象位于第二、四象限C.若,则 D.在每一个象限内,随值的增大而增大7.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=18.如图:已知AD∥BE∥CF,且AB=4,BC=5,EF=4,则DE=()A.5 B.3 C.3.2 D.49.抛物线y=3(x+2)2﹣(m2+1)(m为常数)的顶点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.遵义市脱贫攻坚工作中农村危房改造惠及百万余人,2008年以来全市累计实施农村危房改造40.37万户,其中的数据40.37万用科学记数法表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.某果园2014年水果产量为100吨,2016年水果产量为144吨,则该果园水果产量的年平均增长率为_______________.12.已知,⊙O的半径为6,若它的内接正n边形的边长为6,则n=_____.13.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.14.汽车刹车后行驶的距离(单位:)关于行驶的时间(单位:)的函数解析式是.汽车刹车后到停下来前进了______.15.点A(﹣1,1)关于原点对称的点的坐标是_____.16.若,均为锐角,且满足,则__________.17.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_____.18.如图,圆锥的底面半径r为4,沿着一条母线l剪开后所得扇形的圆心角ɵ=90°,则该圆锥的母线长是_________________.三、解答题(共66分)19.(10分)如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.(1)求证:BD=CD.(2)若弧DE=50°,求∠C的度数.(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.20.(6分)如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.21.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交线段CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,请直接写出存在个满足题意的点.22.(8分)如图,已知是的一条弦,请用尺规作图法找出的中点.(保留作图痕迹,不写作法)23.(8分)如图,等边△ABC中,点D在AC上(CD<AC),连接BD.操作:以A为圆心,AD长为半径画弧,交BD于点E,连接AE.(1)请补全图形,探究∠BAE、∠CBD之间的数量关系,并证明你的结论;(2)把BD绕点D顺时针旋转60°,交AE于点F,若EF=mAF,求的值(用含m的式子表示).24.(8分)“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。某市为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,2017年投入5亿元资金,之后投入资金逐年增长,2019年投入7.2亿元资金用于保障性住房建设.(1)求该市这两年投入资金的年平均增长率.(2)2020年该市计划保持相同的年平均増长率投入资金用于保障性住房建设,如果每户能得到保障房补助款3万元,则2020年该市能够帮助多少户建设保障性住房?25.(10分)如图,点在轴正半轴上,点是反比例函数图象上的一点,且.过点作轴交反比例函数图象于点.(1)求反比例函数的表达式;(2)求点的坐标.26.(10分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中的值是________;(2)被查的200名生中最喜欢球运动的学生有________人;(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据“PA⊥PB,点A与点B关于原点O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQ⊥x轴于点Q,确定OP的最大值即可.【详解】∵PA⊥PB∴∠APB=90°∵点A与点B关于原点O对称,∴AO=BO∴AB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交○M于点,当点P位于位置时,OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5∵∴当点P在的延长线于○M的交点上时,OP取最大值,∴OP的最大值为3+2×2=7∴AB的最大值为7×2=14故答案选B.【点睛】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.2、C【分析】一元二次方程是指只含有一个未知数,且未知数的最高次数为2次的整式方程.根据定义即可求解.【详解】解:A选项含有分式,故不是;B选项中没有说明a≠0,则不是;C选项是一元二次方程;D选项中含有两个未知数,故不是;故选:C.【点睛】本题主要考查的是一元二次方程的定义,属于基础题型.解决这个问题的关键就是要明确一元二次方程的定义.3、A【解析】试题分析:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故选A.考点:扇形面积的计算.4、C【分析】因为DE∥BC,所以可得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方解答即可.【详解】解:∵DE∥BC,

∴△ADE∽△ABC,

∴,

∵AD:DB=1:2,

∴AD:AB=1:3,

∴,

∴△ADE的面积与四边形DBCE的面积之比=1:8,

故选:C.【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.5、C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9,∵S△ADE=3,∴S△ABC=3×9=27,则S四边形DBCE=S△ABC﹣S△ADE=27﹣3=24.故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.6、C【分析】A.将x=3代入反比例函数,根据所求得的y值即可判断;B.根据反比例函数的k值的正负即可判断;C.结合反比例函数的图象和性质即可判断;D.根据反比例函数的k值的正负即可判断.【详解】解:A.当x=3时,,故函数图象必经过点(3,-2),A选项正确;B.由反比例函数的系数k=-6<0,得到反比例函数图象位于第二、四象限,本选项正确;C.由反比例函数图象可知:当,则,故本选项不正确;D.由反比例函数的系数k=-6<0,得到反比例函数图象在各自象限y随x的增大而增大,故本选项正确.故选:C.【点睛】本题考查反比例函数的性质,反比例函数(k≠0),当k>0时,图象位于第一、三象限,且在每一个象限,y随x的增大而减小;当k<0时,图象位于第二、四象限,且在每一个象限,y随x的增大而增大.在做本题的时候可根据k值画出函数的大致图,结合图象进行分析.7、C【分析】利用抛物线与x轴的交点问题确定方程ax2+bx+c=0的解.【详解】解:∵二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(1,0),∴方程ax2+bx+c=0的解为x1=﹣1,x2=1.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.8、C【分析】根据平行线分线段成比例定理列出比例式,代入计算即可.【详解】解:∵AD∥BE∥CF,∴,即,解得,DE=3.2,故选:C.【点睛】本题考查了平行线分线段成比例,正确列出比例式是解题的关键.三条平行线截两条直线,所得的对应线段成比例.9、C【分析】根据二次函数的性质求出抛物线的顶点坐标,根据偶次方的非负性判断.【详解】抛物线y=3(x+2)2﹣(m2+1)的的顶点坐标为(﹣2,﹣(m2+1)),∵m2+1>0,∴﹣(m2+1)<0,∴抛物线的顶点在第三象限,故选:C.【点睛】本题考查的是二次函数的性质,掌握二次函数的顶点坐标的确定方法、偶次方的非负性是解题的关键.10、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:根据科学记数法的定义:40.37万=故选:B.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、10%.【分析】1016年的水果产量=1014年的水果产量×(1+年平均增长率)1,把相关数值代入即可.【详解】根据题意,得

100(1+x)1=144,解这个方程,得x1=0.1,x1=-1.1.经检验x1=-1.1不符合题意,舍去.故答案为10%.【点睛】此题考查列一元二次方程;得到1016年水果产量的等量关系是解决本题的关键.12、1【分析】根据题意作出图形,得到Rt△ADO,利用三角函数值计算出sin∠AOD=,得出∠AOD=15°,通过圆周角360°计算即可得出结果.【详解】解:如图所示:连接AO,BO,过点O做OD⊥AB,∵⊙O的半径为6,它的内接正n边形的边长为6,∴AD=BD=3,∴sin∠AOD==,∴∠AOD=15°,∴∠AOB=90°,∴n==1.故答案为:1.【点睛】本题考查了圆内接正多边形的性质,垂径定理的应用,三角函数值的应用,掌握圆的性质内容是解题的关键.13、.【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC就可以结合勾股定理求出AC的长了.【详解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(1)1.∴OA=.故⊙O的半径为.故答案为:.14、6【分析】根据二次函数的解析式可得出汽车刹车时时间,将其代入二次函数解析式中即可得出s的值.【详解】解:根据二次函数解析式=-6(t²-2t+1-1)=-6(t-1)²+6可知,汽车的刹车时间为t=1s,当t=1时,=12×1-6×1²=6(m)故选:6【点睛】本题考查了二次函数性质的应用,理解透题意是解题的关键.15、(1,﹣1)【分析】直接利用关于原点对称点的性质得出答案.【详解】解:点A(﹣1,1)关于原点对称的点的坐标是:(1,﹣1).故答案为:(1,﹣1).【点睛】此题主要考查了关于原点对称的点的坐标,正确记忆横纵坐标的符号关系是解题关键.16、15【分析】利用绝对值和二次根式的非负性求得的值,然后确定两个角的度数,从而求解.【详解】解:由题意可知:∴∴∠α=60°,∠β=45°∴∠α-∠β=15°故答案为:15【点睛】本题考查绝对值及二次根式的非负性和特殊角的三角函数值,正确计算是本题的解题关键.17、2﹣2【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2﹣2,故答案为:2﹣2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.18、1【分析】由题意首先求得展开之后扇形的弧长也就是圆锥的底面周长,进一步利用弧长计算公式求得扇形的半径,即圆锥的母线l.【详解】解:扇形的弧长=4×2π=8π,可得=8π解得:l=1.故答案为:1.【点睛】本题考查圆锥的计算及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.三、解答题(共66分)19、(1)详见解析;(2)65°;(3).【分析】(1)连接AD,利用圆周角定理推知AD⊥BD,然后由等腰三角形的性质证得结论;(2)根据已知条件得到∠EOD=50°,结合圆周角定理求得∠DAC=25°,所以根据三角形内角和定理求得∠ABD的度数,则∠C=∠ABD,得解;(3)设半径OD=x.则AB=2x.由AF=3BF可得AF=AB=x,BF=AB=x,根据射影定理知:BD2=BF•AB,据此列出方程求得x的值,最后代入弧长公式求解.【详解】(1)证明:如图,连接AD.∵AB是圆O的直径,∴AD⊥BD.又∵AB=AC,∴BD=CD.(2)解:∵弧DE=50°,∴∠EOD=50°.∴∠DAE=∠DOE=25°.∵由(1)知,AD⊥BD,则∠ADB=90°,∴∠ABD=90°﹣25°=65°.∵AB=AC,∴∠C=∠ABD=65°.(3)∵BC=8,BD=CD,∴BD=1.设半径OD=x.则AB=2x.由AF=3BF可得AF=AB=x,BF=AB=x,∵AD⊥BD,DF⊥AB,∴BD2=BF•AB,即12=x•2x.解得x=1.∴OB=OD=BD=1,∴△OBD是等边三角形,∴∠BOD=60°.∴弧BD的长是:=.【点睛】此题主要考查圆的综合,解题的关键是熟知圆周角定理、三角形内角和及射影定理的运用.20、35°【分析】连接OD,根据切线的性质得∠ODC=90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.21、(1)(2)当时,的长最大(3)【分析】(1)根据待定系数法求解即可;(2)设点的坐标为、点的坐标为,列出,根据二次函数的图象性质求解即可;(3)分以为对角线时、以为对角线时、以为对角线时三种情况进行讨论求解即可.【详解】解:(1)∵抛物线与轴交于、两点∴将、两点代入,得:∴∴抛物线的解析式为:.(2)∵直线与轴交于点,与轴交于点∴点的坐标为,点的坐标为∴∵点的横坐标为∴点的坐标为,点的坐标为∴∵,∴当时,的长最大.(3)∵由(2)可知,点的坐标为:∴以、、、为顶点的四边形是平行四边形分为三种情况,如图:①以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即;②以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即;③以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即.∴综上所述,在(2)的情况下,存在以、、、为顶点的四边形是平行四边形,点的坐标为:、或∴存在个满足题意的点.【点睛】本题考查了二次函数、一次函数和平行四边形的综合应用,涉及到的知识点有待定系数法求解析式、利用一次函数关系式求与坐标轴交点坐标、根据图像信息直接列函数关系式、将二次函数一般式通过配方法转化成顶点式、求当二次函数取最值时的自变量取值、根据平行四边形的性质求得符合要求的点的坐标等,属于压轴题目,有一定难度.22、见解析【分析】作线段AB的垂直平分线即可得到AB的中点D.【详解】如图,作线段AB的垂直平分线即可得到AB的中点D.【点睛】此题考查作图能力,作线段的垂直平分线,掌握画图方法是解题的关键.23、(1)图形见解析,∠BAE=2∠CBD,理由见解析;(2),理由见解析【分析】(1)根据圆周角和圆心角的关系得:2∠BDH=∠BAE,由等腰三角形的性质得HD∥BC,由平行线的性质可得结论;

(2)如图2,作辅助线,由旋转得:△BDM是等边三角形,证明△AMB≌△CDB(SAS),得AM=CD,∠MAB=∠C=60°,证明△ABD∽△DFE,设AF=a,列比例式可得结论【详解】(1)如图1,∠BAE=2∠CBD.设弧DE与AB交于H,连接DH,∴2∠BDH=∠BAE,又∵AD=AH,AB=AC,∠BAC=60°,∴∠AHD=∠ADH=60°,∠ABC=∠C=60°,∴∠AHD=∠ABC,∴HD∥BC,∴∠DBC=∠HDB,∴∠BAE=2∠DBC;(2)如图2,连接AM,BM,由旋转得:BD=DM,∠BDM=60°,∴△BDM是等边三角形,∴BM=BD,∠MBD=60°,∵∠ABM+∠ABD=∠ABD+∠CBD,∴∠ABM=∠CBD,∵△ABC是等边三角形,∴AB=AC,∴△AMB≌△CDB(SAS),∴AM=CD,∠MAB=∠C=60°,∵∠AGM=∠BGD,∠MAB=∠BDM=60°,∴∠AMD=∠ABD,由(1)知:AD=AE,∴∠AED=∠ADE,∵∠EDF=∠BAD,∴△ABD∽△DFE,∴∠EFD=∠ABD=∠AFM=∠AMD,∴AF=AM=CD,设AF=a,则EF=ma,AE=a+ma=(m+1)a,∴AB=AD+CD=AE+CD=(m+2)a,由△ABD∽△DFE,∴==.【点睛】本题考查全等三角形的性质和判定、相似三角形的判定和性质、等边三角形、三角形内角和和外角的性质等知识,解题的关键灵活应用所学知识解决问题,学会利用辅助线,构建全等三角形解决问题,属于中考常考题型.24、(1)年平均增长率为20%;(2)28800户【分析】(1)一般用增长后的量=增长前的量×(1+增长率),今年年要投入资金是5(1+x)亿元,在今年的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论