2024届湖北省武汉市新洲区数学九年级第一学期期末综合测试模拟试题含解析_第1页
2024届湖北省武汉市新洲区数学九年级第一学期期末综合测试模拟试题含解析_第2页
2024届湖北省武汉市新洲区数学九年级第一学期期末综合测试模拟试题含解析_第3页
2024届湖北省武汉市新洲区数学九年级第一学期期末综合测试模拟试题含解析_第4页
2024届湖北省武汉市新洲区数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市新洲区数学九年级第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图是二次函数图象的一部分,其对称轴是,且过点,下列说法:①;②;③;④若是抛物线上两点,则,其中说法正确的是(

)A.①② B.②③ C.①②④ D.②③④2.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.3.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B. C. D.4.如图,BA=BC,∠ABC=80°,将△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,连接DE,则∠BED为()A.50° B.55° C.60° D.65°5.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(

)A.15

B.12

C.9

D.66.为了解我县目前九年级学生对中考体育的重视程度,从全县5千多名九年级的学生中抽取200名学生作为样本,对其进行中考体育项目的测试,200名学生的体育平均成绩为40分则我县目前九年级学生中考体育水平大概在()A.40分 B.200分 C.5000 D.以上都有可能7.下列是世界各国银行的图标,其中不是轴对称图形的是()A. B. C. D.8.用配方法解一元二次方程x2﹣2x=5的过程中,配方正确的是()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.610.已知α为锐角,且sin(α﹣10°)=,则α等于()A.70° B.60° C.50° D.30°11.如图,AC是电杆AB的一根拉线,现测得BC=6米,∠ABC=90°,∠ACB=52°,则拉线AC的长为(

)米.A.

B.

C.

D.12.如图,数轴上,,,四点中,能表示点的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在由边长为1的小正方形组成的网格中.点A,B,C,D都在这些小正方形的格点上,AB、CD相交于点E,则sin∠AEC的值为_____.14.如图,在△ABC中,∠C=90°,AC=3,若cosA=,则BC的长为________.15.如图,点在反比例函数的图象上,轴,垂足为,且,则__________.16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.17.如果关于的一元二次方程的一个解是,则________.18.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.三、解答题(共78分)19.(8分)一个不透明的布袋里装有2个白球和2个红球,它们除颜色外其余都相同.(1)从中任意摸出1个球,则摸到红球的概率是;(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球是同色的概率.20.(8分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.21.(8分)学校打算用长米的篱笆围城一个长方形的生物园饲养小兔,生物园的一面靠在长为米的墙上(如图).(1)若生物园的面积为平方米,求生物园的长和宽;(2)能否围城面积为平方米的生物园?若能,求出长和宽;若不能,请说明理由.22.(10分)如图,已知AB为⊙O的直径,PA与⊙O相切于A点,点C是⊙O上的一点,且PC=PA.(1)求证:PC是⊙O的切线;(2)若∠BAC=45°,AB=4,求PC的长.23.(10分)用适当的方法解方程(1)4(x-1)2=9(2)24.(10分)如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.25.(12分)2019年全国青少年禁毒知识竞赛开始以来,某市青少年学生踊跃参加,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解该市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图:(1)本次抽查的人数是;扇形统计图中不及格学生所占的圆心角的度数为;(2)补全条形统计图;(3)若某校有2000名学生,请你根据调查结果估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?26.如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,∠AED=90°,将AED绕点E顺时针旋转得到,A′E交AD于P,D′E交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动.(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据二次函数的图像和性质逐个分析即可.【详解】解:对于①:∵抛物线开口向上,∴a>0,∵对称轴,即,说明分子分母a,b同号,故b>0,∵抛物线与y轴相交,∴c<0,故,故①正确;对于②:对称轴,∴,故②正确;对于③:抛物线与x轴的一个交点为(-3,0),其对称轴为直线x=-1,根据抛物线的对称性可知,抛物线与x轴的另一个交点为,1,0),故当自变量x=2时,对应的函数值y=,故③错误;对于④:∵x=-5时离对称轴x=-1有4个单位长度,x=时离对称轴x=-1有个单位长度,由于<4,且开口向上,故有,故④错误,故选:A.【点睛】本题考查了二次函数的图像与其系数的符号之间的关系,熟练掌握二次函数的图形性质是解决此类题的关键.2、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.3、D【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC=.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.4、A【分析】首先根据旋转的性质,得出∠CBD=∠ABE,BD=BE;其次结合图形,由等量代换,得∠EBD=∠ABC;最后根据等腰三角形的性质,得出∠BED=∠BDE,利用三角形内角和定理求解即可.【详解】∵△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故选:A.【点睛】本题主要考查了旋转的性质、等腰三角形的性质,以及三角形内角和定理.解题的关键是根据旋转的性质得出旋转前后的对应角、对应边分别相等,利用等腰三角形的性质得出“等边对等角”,再结合三角形内角和定理,即可得解.5、A【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A6、A【分析】平均数可以反映一组数据的一般情况、和平均水平,样本的平均数即可估算出总体的平均水平.【详解】∵200名学生的体育平均成绩为40分,∴我县目前九年级学生中考体育水平大概在40分,故选:A.【点睛】本题考查用样本平均数估计总体的平均数,平均数是描述数据集中位置的一个统计量,既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别.7、D【解析】本题考查的是轴对称图形的定义.把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形.A、B、C都可以,而D不行,所以D选项正确.8、B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=5+1,即(x﹣1)2=6,故选:B.【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9、C【解析】试题解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故选C.10、A【分析】根据特殊角的三角函数值可得α﹣10°=60°,进而可得α的值.【详解】解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选A.【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.11、C【分析】根据余弦定义:即可解答.【详解】解:,,米,米;故选C.【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义.12、C【解析】首先判断出的近似值是多少,然后根据数轴的特征,当数轴方向朝右时,右边的数总比左边的数大,判断出能表示点是哪个即可.【详解】解:∵≈1.732,在1.5与2之间,∴数轴上,,,四点中,能表示的点是点P.故选:C【点睛】本题考查了在数轴上找表示无理数的点的方法,先求近似数再描点.二、填空题(每题4分,共24分)13、【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=,由AC∥BD可得△ACE∽△BDE,∴,∴CE=CD=,在Rt△ECF中,sin∠AEC=,故答案为:.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.14、1【分析】由题意先根据∠C=90°,AC=3,cos∠A=,得到AB的长,再根据勾股定理,即可得到BC的长.【详解】解:∵△ABC中,∠C=90°,AC=3,cos∠A=,∴,∴AB=5,∴BC==1.故此空填1.【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA,以此并结合勾股定理分析求解.15、6【分析】根据三角形的面积等于即可求出k的值.【详解】∵由题意得:=3,解得,∵反比例函数图象的一个分支在第一象限,∴k=6,故答案为:6.【点睛】此题考查反比例函数的比例系数k的几何意义,掌握三角形的特点与k的关系是解题的关键.16、1.1【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得FH=1.1里.故答案为1.1.17、1【分析】利用一元二次方程解的定义得到,然后把变形为,再利用整体代入的方法计算.【详解】把代入方程得:,

∴,

∴.

故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、1【分析】连接OC,根据反比例函数的几何意义,求出△BCO面积即可解决问题.【详解】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=1,故答案为:1.【点睛】本题考查反比例函数、切线的性质等知识,解题的关键是理解S△BCO=,属于中考常考题型.三、解答题(共78分)19、(1);(2)【分析】(1)根据等可能事件的概率公式,即可求解;(2)根据题意,列出表格,可知:总共有12种等可能的情况,摸出颜色相同的情况有4种,进而即可求解.【详解】(1)P(摸到红球)==;(2)列表分析如下(同色用“√”,异色用“×”表示):白1白2红1红2白1√××白2√××红1××√红2××√∴(两次摸到同色球).【点睛】本题主要考查等可能事件的概率,掌握列表法和概率公式,是解题的关键.20、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=,AB=4,D是边AB的中点,得到AC2=,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D是△ABC边AB上的“理想点”,理由:∵AB=4,点D是△ABC的边AB的中点,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC边AB上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,当∠BCD=∠A时,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,∴BC==3,∵,∴,∴.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90,∠ACM=45,∴∠AMC=∠ACM=45,∴AM=AC,∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴,∴,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴,∴,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.21、(1)生物园的宽为米,长为米;(2)不能围成面积为平方米的生物园,见解析【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16-2x)米,根据长方形的面积公式结合生物园的面积为30平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;

(2)设垂直于墙的一边长为y米,则平行于墙的一边长为(16-2y)米,根据长方形的面积公式结合生物园的面积为35平方米,即可得出关于y的一元二次方程,由根的判别式△<0可得出该方程无解,进而可得出不能围成面积为35平方米的生物园.【详解】解:(1)设生物园的宽为米,那么长为米,依题意得:,解得,,当时,,不符合题意,舍去∴,答:生物园的宽为米,长为米.(2)设生物园的宽为米,那么长为米,依题意得:,∵,∴此方程无解,∴不能围成面积为平方米的生物园.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.22、(1)见解析;(2)2【分析】(1)根据切线的性质得到∠PAB=90°,根据等腰三角形的性质得到∠OAC=∠OCA,求得PC⊥CO,根据切线的判定定理即可得到结论;(2)连接BC,先根据△ACB是等腰直角三角形,得到AC和,从而推出△PAC是等腰直角三角形,根据等腰直角三角形的性质即可得到PC的值.【详解】(1)连接CO,∵PA是⊙O的切线,∴∠PAB=90°,∵OA=OC,∴∠OAC=∠OCA,∵PC=PA,∴∠PAC=∠PCA,∴∠PCO=∠PCA+∠ACO=∠PAC+∠OAC=∠PAB=90°,∴PC⊥CO,∵OC是半径∴PC是⊙O的切线;(2)连接BC,为⊙O直径,,,,,【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和等腰直角三角形的性质.23、(1),;(2),【分析】(1)先在方程的两边同时除以4,再直接开方即可;(2)将常数项移到等式的右边,再两边配上一次项系数的一半可得.【详解】(1)解:∴,,(2)解:∴,.【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法的基本步骤是解题的关键.24、(1)作图见解析;(2)作图见解析.【分析】(1)根据AB=2CD,AB=BE,可知BE=CD,再根据BE//CD,可知连接CE,CE与BD的交点F即为BD的中点,连接AF,则AF即为△ABD的BD边上的中线;(2)由(1)可知连接CE与BD交于点F,则F为BD的中点,根据三角形中位线定理可得EF//AD,EF=AD,则可得四边形ADFE要等腰梯形,连接AF,DE交于点O,根据等腰梯形的性质可推导得出OA=OD,再结合BA=BD可知直线BO是线段AD的垂直平分线,据此即可作出可得△ABD的AD边上的高.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺按要求作图,结合题意认真分析图形的成因是解题的关键.25、(1)120,18°;(2)详见解析;(3)1000【分析】(1)由优秀的人数及其所占百分比可得总人数;用360°乘以不及格人数所占比例即可得出不及格学生所占的圆心角的度数;(2)用总人数减去各等级人数之和求出良好的人数,据此可补全条形图;(3)用总人数乘以样本中“优秀”和“良好”人数和占被调查人数的比例即可得出答案.【详解】解:(1)本次抽查的人数为:24÷20%=120(人),扇形统计图中不及格学生所占的圆心角的度数为3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论