版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【题型综述】导数的几何意义:函数在处的导数就是曲线在点处的切线的斜率,即.【注】曲线的切线的求法:若已知曲线过点P(x0,y0),求曲线过点P的切线,则需分点P(x0,y0)是切点和不是切点两种情况求解.(1)当点P(x0,y0)是切点时,切线方程为y−y0=f′(x0)(x−x0);(2)当点P(x0,y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1,f(x1));第二步:写出过P′(x1,f(x1))的切线方程为y−f(x1)=f′(x1)(x−x1);第三步:将点P的坐标(x0,y0)代入切线方程求出x1;第四步:将x1的值代入方程y−f(x1)=f′(x1)(x−x1),可得过点P(x0,y0)的切线方程.求曲线y=f(x)的切线方程的类型及方法(1)已知切点P(x0,y0),求y=f(x)过点P的切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f(x)的切线方程:设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f(x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f′(x0)求出切点坐标(x0,y0),最后写出切线方程.(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.②过点P的切线即切线过点P,P不一定是切点.因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上.【典例指引】例1.(2013全国新课标Ⅰ卷节选)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值.例2.设函数.(1)当时,求函数在区间上的最小值;(2)当时,曲线在点处的切线为,与轴交于点,求证:.例3.已知函数在点处的切线方程为.⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值;⑶若过点可作曲线的三条切线,求实数的取值范围.【新题展示】1.【2019吉林一调】已知函数.当时,求函数在点处的切线方程;当时,若对任意都有,求实数a的取值范围.2.【2019北京昌平区期末】已知函数f(x)=lnx-a.(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)恒成立,求实数a的取值范围.3.【2019浙江浙南名校联盟期末联考】设,函数.(I)证明:当时,对任意实数,直线总是曲线的切线;(Ⅱ)若存在实数,使得对任意且,都有,求实数的最小值.4.【2019河南省期末】已知函数.(1)若,曲线在点处的切线经过点,求的最小值;(2)若只有一个零点,且,求的取值范围.【同步训练】1.设函数,若函数在处的切线方程为.(Ⅰ)求实数的值;(Ⅱ)求函数在上的最大值.2.已知函数,其导函数的两个零点为-3和0.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)求函数在区间上的最值.3.设函数的定义域为,若对任意,,都有,则称函数为“”函数.已知函数的图象为曲线,直线与曲线相切于.(1)求的解析式,并求的减区间;(2)设,若对任意,函数为“”函数,求实数的最小值.4.已知函数.(1)求的单调区间;(2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(3)若方程为实数)有两个正实数根且,求证:.5.已知函数在处的切线方程为.(1)若=,求证:曲线上的任意一点处的切线与直线和直线围成的三角形面积为定值;6.已知函数()(1)若在处取得极大值,求实数的取值范围;(2)若,且过点有且只有两条直线与曲线相切,求实数的值.7.已知函数,.(1)若直线是曲线与曲线的公切线,求;8.已知函数(为常数),其图像是曲线.(1)设函数的导函数为,若存在三个实数,使得与同时成立,求实数的取值范围;(2)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为,问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.9.已知函数,.(1)若曲线与在公共点处有相同的切线,求实数的值;(2)当时,若曲线与在公共点处有相同的切线,求证:点唯一;(3)若,,且曲线与总存在公切线,求:正实数的最小值.【题型综述】导数的几何意义:函数在处的导数就是曲线在点处的切线的斜率,即.【注】曲线的切线的求法:若已知曲线过点P(x0,y0),求曲线过点P的切线,则需分点P(x0,y0)是切点和不是切点两种情况求解.(1)当点P(x0,y0)是切点时,切线方程为y−y0=f′(x0)(x−x0);(2)当点P(x0,y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1,f(x1));第二步:写出过P′(x1,f(x1))的切线方程为y−f(x1)=f′(x1)(x−x1);第三步:将点P的坐标(x0,y0)代入切线方程求出x1;第四步:将x1的值代入方程y−f(x1)=f′(x1)(x−x1),可得过点P(x0,y0)的切线方程.求曲线y=f(x)的切线方程的类型及方法(1)已知切点P(x0,y0),求y=f(x)过点P的切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f(x)的切线方程:设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f(x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f′(x0)求出切点坐标(x0,y0),最后写出切线方程.(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.②过点P的切线即切线过点P,P不一定是切点.因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上.【典例指引】例1.(2013全国新课标Ⅰ卷节选)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值.简析:(Ⅰ)由已知得,而=,=,∴=4,=2,=2,=2;学科&网例2.设函数.(1)当时,求函数在区间上的最小值;(2)当时,曲线在点处的切线为,与轴交于点,求证:.例3.已知函数在点处的切线方程为.⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值;⑶若过点可作曲线的三条切线,求实数的取值范围.⑶因为点不在曲线上,所以可设切点为.则.因为,所以切线的斜率为.则=,即.学科&网因为过点可作曲线的三条切线,所以方程有三个不同的实数解.所以函数有三个不同的零点.则.令,则或.02++增极大值减极小值增则,即,解得.学科&网【新题展示】1.【2019吉林一调】已知函数.当时,求函数在点处的切线方程;当时,若对任意都有,求实数a的取值范围.【思路引导】(1)把代入原方程可得,可得,,可得函数在点处的切线方程;(2),分,两种情况讨论,结合函数的单调性及对任意都有,可得a的取值范围.【解析】当时,,,,,切线方程为:,整理得:.,此时a的值不存在;当时,,此时在上递增,在上递减.函数在上的最大值是,由题意得,解得:.综上,a的取值范围是.2.【2019北京昌平区期末】已知函数f(x)=lnx-a.(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)恒成立,求实数a的取值范围.【思路引导】(1)利用曲线的切线方程公式,求得结果;(2)由题,进行变形为f(x)恒成立,即f(x)恒成立,构造新函数,用参变分离求函数单调性求其最值,求得a的范围.【解析】函数f(x)的定义域为(0,+)①当a=0时,令,得x=1.x,变化情况如下表:x(0,1)1(1,+)+0-g(x)↗极大值↘所以,故满足题意.3.【2019浙江浙南名校联盟期末联考】设,函数.(I)证明:当时,对任意实数,直线总是曲线的切线;(Ⅱ)若存在实数,使得对任意且,都有,求实数的最小值.【思路引导】(I)将代入函数解析式,再对函数求导,由与的值,即可证明结论;(Ⅱ)若存在实数,使得对任意且,都有等价于存在实数,使得对任意,都有,且对任意,都有,再由,得,进而可求出结果.【解析】易得的导数.(I)证明:此时,.注意到对任意实数,,,故直线是曲线在原点处的切线;4.【2019河南省期末】已知函数.(1)若,曲线在点处的切线经过点,求的最小值;(2)若只有一个零点,且,求的取值范围.【思路引导】(1)先对函数求导,结合导数的几何意义即可求出结果;(2)用分类讨论的思想,分别讨论和和三种情况,利用导数的方法研究函数的极值,即可求出结果.【解析】(1),,则曲线在点处的切线方程为,令,得.设,,当,;当时,.故,即的最小值为.【同步训练】1.设函数,若函数在处的切线方程为.(Ⅰ)求实数的值;(Ⅱ)求函数在上的最大值.【思路引导】(Ⅰ)根据导数的几何意义,可知函数在处的导数即为切线的斜率,又点(1,)为切点,列出方程解出a,b的值;(Ⅱ)把a,b的值代入解析式,对函数求导判断单调性,根据单调区间写出函数的最值.∴在[,2)上单调递增,在(2,e]上单调递减,在处取得极大值这个极大值也是的最大值.又,学科&网所以函数在上的最大值为.2.已知函数,其导函数的两个零点为-3和0.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)求函数在区间上的最值.【思路引导】对函数求导,由于导函数有两个零点,所以这两个零点值满足,解方程组求出m,n;利用导数的几何意义求切线方程,先求f(1),求出切点,再求得出斜率,利用点斜式写出切线方程,求单调区间只需在定义域下解不等式和,求出增区间和减区间;求函数在闭区间上的最值,先研究函数在该区间的单调性、极值,求出区间两端点的函数值,比较后得出最值.所以函数在区间上的最大值为,最小值为-1.学科&网3.设函数的定义域为,若对任意,,都有,则称函数为“”函数.已知函数的图象为曲线,直线与曲线相切于.(1)求的解析式,并求的减区间;(2)设,若对任意,函数为“”函数,求实数的最小值.【思路引导】根据导数的几何意义,借助切点和斜率列方程求出,得出函数的解析式,利用导数解求出函数的单调减区间;对任意,函数为“”函数,等价于在上,,根据函数的在上的单调性,求出的最值,根据条件求出的范围,得出结论.∵在上为减函数,且,∴,∴在上为减函数,∴,,∴,得,又,∴.学科&网4.已知函数.(1)求的单调区间;(2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(3)若方程为实数)有两个正实数根且,求证:.【思路引导】(1)求出原函数的导函数,得到导函数的零点,由零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;(2)设出点的坐标,利用导数求出切线方程,构造辅助函数,利用导数得到对于任意实数,有,即对任意实数,都有;(3)由(2)知,,求出方程的根,,由在单调递减,得到,同理得到,根据不等式性质则可证得.(3)由(2)知,设方程的根为,可得,因为在单调递减,又由(II)知,所以.类似的,设曲线在原点处的切线为可得,对任意的,有即.设方程的根为,可得,因为在单调递增,且,因此,所以.学科&网5.已知函数在处的切线方程为.(1)若=,求证:曲线上的任意一点处的切线与直线和直线围成的三角形面积为定值;【思路引导】根据导数的几何意义,为切线的斜率,解出,写出的切线方程求出三角形的面积为定值.6.已知函数()(1)若在处取得极大值,求实数的取值范围;(2)若,且过点有且只有两条直线与曲线相切,求实数的值.【思路引导】(1)根据条件得,化简得,再根据有极值得中判别式大于零,进而得,最后列表分析极大值条件得解得实数的取值范围;(2)切线条数的确定决定于切点个数,所以设切点,转化为关于切点横坐标的方程,再利用导数研究函数有两零点,即极值为零,解得实数的值.点评:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.7.已知函数,.(1)若直线是曲线与曲线的公切线,求;【思路引导】(1)设直线与切于点,与切于,处的切线方程为.处的切线方程为.根据这两条直线为同一条直线,可得关于和,解得和的值,从而可得结果;点评:本题主要考查利用导数的几何意义及利用导数研究函数的单调性,属于难题.应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.8.已知函数(为常数),其图像是曲线.(1)设函数的导函数为,若存在三个实数,使得与同时成立,求实数的取值范围;(2)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为,问:是否存在常
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司年度员工培训总结报告范本
- 营销与策划广告传媒公司市场营销实习生实习报告
- 市场调研市场市场调研员实习报告
- 生态学生态农业公司农业推广实习生实习报告
- 交通运输工程交通运输公司交通工程师实习生实习报告
- 市场调研洞察港调研员实习报告
- 电子商务电商客服公司电商客服实习生实习报告
- 国际金融投资公司金融分析师实习报告
- 2026年高端餐饮品牌消费者画像分析方案
- 2026年移动端引擎搜索流量获取方案
- 建设方承包方和劳务公司三方代发协议模板
- 产前筛查培训课件
- 交期缩短计划控制程序
- 神经指南:脑血管造影术操作规范中国专家共识
- 物理必修一综合测试题
- 文化区发展策略研究-以香港西九龙文化区和牛棚艺术村为例
- 广东二甲以上医院 共152家
- 电力温控行业研究报告
- GB/T 4358-1995重要用途碳素弹簧钢丝
- GB/T 35263-2017纺织品接触瞬间凉感性能的检测和评价
- 2023年1月浙江首考高考英语试卷真题及答案(含听力原文mp3+作文范文)
评论
0/150
提交评论