2024届山东省夏津县第一中学数学高一第二学期期末质量检测试题含解析_第1页
2024届山东省夏津县第一中学数学高一第二学期期末质量检测试题含解析_第2页
2024届山东省夏津县第一中学数学高一第二学期期末质量检测试题含解析_第3页
2024届山东省夏津县第一中学数学高一第二学期期末质量检测试题含解析_第4页
2024届山东省夏津县第一中学数学高一第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省夏津县第一中学数学高一第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.2.()A.4 B. C.1 D.23.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°4.已知四棱锥的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为,SE与平面ABCD所成的角为β,二面角S-AB-C的平面角为,则()A. B. C. D.5.已知向量,,则与的夹角为()A. B. C. D.6.直线与平行,则的值为()A. B.或 C.0 D.-2或07.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.128.不等式4xA.-∞,-12C.-∞,-329.化简sin2013o的结果是A.sin33o B.cos33o C.-sin33o D.-cos33o10.设为锐角三角形,则直线与两坐标轴围成的三角形的面积的最小值是()A.10 B.8 C.4 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,,以后各项由公式给出,则等于_____.12.已知,若,则______.13.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.14.程的解为______.15.已知,则_________.16.不等式的解集是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与.(1)当时,求直线与的交点坐标;(2)若,求a的值.18.已知.(1)当时,求数列前n项和;(用和n表示);(2)求.19.已知常数且,在数列中,首项,是其前项和,且,.(1)设,,证明数列是等比数列,并求出的通项公式;(2)设,,证明数列是等差数列,并求出的通项公式;(3)若当且仅当时,数列取到最小值,求的取值范围.20.如图,在平面直角坐标系中,点,,锐角的终边与单位圆O交于点P.(Ⅰ)当时,求的值;(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M坐标;若不存在,说明理由.21.已知数列的首项,其前n项和为满足.(1)数列的通项公式;(2)设,求数列的前n项和表达式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.2、A【解题分析】

分别利用和差公式计算,相加得答案.【题目详解】故答案为A【题目点拨】本题考查了正切的和差公式,意在考查学生的计算能力.3、C【解题分析】

取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【题目详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【题目点拨】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.4、C【解题分析】

根据题意,分别求出SE与BC所成的角、SE与平面ABCD所成的角β、二面角S-AB-C的平面角的正切值,由正四棱锥的线段大小关系即可比较大小.【题目详解】四棱锥的底面是正方形,侧棱长均相等,所以四棱锥为正四棱锥,(1)过作,交于,过底面中心作交于,连接,取中点,连接,如下图(1)所示:则;(2)连接如下图(2)所示,则;(3)连接,则,如下图(3)所示:因为所以,而均为锐角,所以故选:C.【题目点拨】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.5、D【解题分析】

利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【题目详解】设两个向量的夹角为,则,故.故选:D.【题目点拨】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.6、A【解题分析】

若直线与平行,则,解出a值后,验证两条直线是否重合,可得答案.【题目详解】若直线与平行,

则,

解得或,

又时,直线与表示同一条直线,

故,

故选A.本题考查的知识点是直线的一般式方程,直线的平行关系,正确理解直线平行的几何意义是解答的关键.7、C【解题分析】

由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【题目详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【题目点拨】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.8、B【解题分析】

因式分解不等式,可直接求得其解集。【题目详解】∵4x2-4x-3≤0,∴【题目点拨】本题考查求不等式解集,属于基础题。9、C【解题分析】试题分析:sin2013o=.考点:诱导公式.点评:直接考查诱导公式,我们要熟记公式.属于基础题型.10、B【解题分析】

令,得直线在x、y轴上的截距,求得三角形面积并利用二倍角公式化简,根据三角函数图象和性质求得面积最小值即可.【题目详解】令得直线在y轴上的截距为,令得直线在x轴上的截距为,其围成的三角形面积:,求S的最小值转化为求函数的最小值,因为为锐角,所以,当时取最小值−1,则,故围成三角形面积最小值为8.故选:B.【题目点拨】本题考查直线方程与三角函数二倍角公式的应用,综合题性较强,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

可以利用前项的积与前项的积的关系,分别求得第三项和第五项,即可求解,得到答案.【题目详解】由题意知,数列中,,且,则当时,;当时,,则,当时,;当时,,则,所以.【题目点拨】本题主要考查了数列的递推关系式的应用,其中解答中熟练的应用递推关系式是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解题分析】

由条件利用正切函数的单调性直接求出的值.【题目详解】解:函数在上单调递增,且,若,则,故答案为:.【题目点拨】本题主要考查正切函数的单调性,根据三角函数的值求角,属于基础题.13、【解题分析】

求出长方体体积与三棱锥的体积后即可得到棱锥的体积与剩下的几何体体积之比.【题目详解】设长方体长宽高分别为,,,所以长方体体积,三棱锥体积,所以棱锥的体积与剩下的几何体体积的之比为:.故答案为:.【题目点拨】本题主要考查了长方体体积公式,三棱锥体积公式,属于基础题.14、【解题分析】

设,即求二次方程的正实数根,即可解决问题.【题目详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【题目点拨】本题考查指数型二次方程,考查换元法,属于基础题.15、【解题分析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在.16、【解题分析】

且,然后解一元二次不等式可得解集.【题目详解】解:,∴且,或,不等式的解集为,故答案为:.【题目点拨】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)当时,直线与联立即可.(2)两直线平行表示斜率相同且截距不同,联立方程求解即可.【题目详解】(1)当时,直线与,联立,解得,故直线与的交点坐标为.(2)因为,所以,即解得.【题目点拨】此题考察直线斜率,两直线平行表示斜率相等且截距不同(如果斜率和截距都相同则是同一条直线),属于基础简单题目.18、(1)时,时,;(2);【解题分析】

(1)当时,求出,再利用错位相减法,求出的前项和;(2)求出的表达式,对,的大小进行分类讨论,从而求出数列的极限.【题目详解】(1)当时,可得,当时,得到,所以,当时,所以,两边同乘得上式减去下式得,所以所以综上所述,时,;时,.(2)由(1)可知当时,则;当时,则若,若,所以综上所述.【题目点拨】本题考查错位相减法求数列的和,数列的极限,涉及分类讨论的思想,属于中档题.19、(1)证明见解析,;(2)证明见解析,;(3).【解题分析】

(1)令,求出的值,再令,由,得出,将两式相减得,再利用等比数列的定义证明为常数,可得出数列为等比数列,并确定等比数列的首项和公比,可求出;(2)由题意得出,再利用等差数列的定义证明出数列为等差数列,确定等差数列的首项和公差,可求出数列的通项公式;(3)求出数列的通项公式,由数列在时取最小值,可得出当时,,当时,,再利用参变量分离法可得出实数的取值范围.【题目详解】(1)当时,有,即,;当时,由,可得,将上述两式相减得,,,且,所以,数列是以,以为公比的等比数列,;(2)由(1)知,,由等差数列的定义得,且,所以,数列是以为首项,以为公差的等差数列,因此,;(3)由(2)知,,,由数列在时取最小值,可得出当时,,当时,,由,得,得在时恒成立,由于数列在时单调递减,则,此时,;由,得,得在时恒成立,由于数列在时单调递减,则,此时,.综上所述:实数的取值范围是.【题目点拨】本题考查利用定义证明等比数列和等差数列,证明时需结合题中数列递推式的结构进行证明,同时也考查数列最值问题,需要结合题中条件转化为与项的符号相关的问题,利用参变量分离法可简化计算,考查化归与转化思想和运算求解能力,综合性较强,属于难题.20、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)设点,求得向量的坐标,根据向量的数量积的运算,求得,即可求得答案.(Ⅱ)设M点的坐标为,把恒成立问题转化为恒成立,列出方程组,即可求解.【题目详解】(Ⅰ),,(Ⅱ)设M点的坐标为,则,,,.【题目点拨】本题主要考查了向量的坐标运算,以及向量的数量积的应用和恒成立问题的求解,其中解答中合理利用向量的坐标运算及向量的数量积的运算,以及转化等式的恒成立问题,列出相应的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论