




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市海淀区北京师大附中高一数学第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.2.过△ABC的重心任作一直线分别交边AB,AC于点D、E.若,,,则的最小值为()A.4 B.3 C.2 D.13.在等差数列中,,则数列前项和取最大值时,的值等于()A.12 B.11 C.10 D.94.已知函数则的是A. B. C. D.5.已知正实数满足,则的最小值()A.2 B.3 C.4 D.6.已知等比数列中,,数列是等差数列,且,则()A.3 B.6 C.7 D.87.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是()A.甲队平均得分高于乙队的平均得分中乙B.甲队得分的中位数大于乙队得分的中位数C.甲队得分的方差大于乙队得分的方差D.甲乙两队得分的极差相等8.已知角的终边经过点,则A. B. C. D.9.已知直线m,n,平面α,β,给出下列命题:①若m⊥α,n⊥β,且m⊥n,则α⊥β②若m∥α,n∥β,且m∥n,则α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,则m⊥n其中正确的命题是()A.②③ B.①③ C.①④ D.③④10.函数,,若对任意,存在,使得成立,则实数m的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线x-312.已知向量,则________13.方程组的增广矩阵是________.14.函数,的值域是________.15.已知数列满足,(),则________.16.设的内角,,所对的边分别为,,.已知,,如果解此三角形有且只有两个解,则的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列的前项和为,求数列前项和.18.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.19.如图,在四棱锥中,平面,底面是菱形,连,交于点.(Ⅰ)若点是侧棱的中点,连,求证:平面;(Ⅱ)求证:平面平面.20.为选派一名学生参加全市实践活动技能竟赛,A、B两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm)A、B两位同学各加工的10个零件直径的平均数与方差列于下表;平均数方差A200.016B20s2B根据测试得到的有关数据,试解答下列问题:(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.21.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【题目详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,
∴,
故选A.【题目点拨】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.2、B【解题分析】
利用重心以及向量的三点共线的结论得到的关系式,再利用基本不等式求最小值.【题目详解】设重心为,因为重心分中线的比为,则有,,则,又因为三点共线,所以,则,取等号时.故选B.【题目点拨】(1)三角形的重心是三条中线的交点,且重心分中线的比例为;(2)运用基本不等式时,注意取等号时条件是否成立.3、C【解题分析】试题分析:最大,考点:数列单调性点评:求解本题的关键是由已知得到数列是递减数列,进而转化为寻找最小的正数项4、D【解题分析】
根据自变量的范围确定表达式,从里往外一步步计算即可求出.【题目详解】因为,所以,因为,所以==3.【题目点拨】主要考查了分段函数求值问题,以及对数的运算,属于基础题.对于分段函数求值问题,一定要注意根据自变量的范围,选择正确的表达式代入求值.5、B【解题分析】
,当且仅当,即,时的最小值为3.故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.6、D【解题分析】
由等比数列的性质求得,再由等差数列的性质可得结果.【题目详解】因为等比数列,且,解得,数列是等差数列,则,故选:D.【题目点拨】本题主要考查等比数列与等差数列的下标性质,属于基础题.解等差数列问题要注意应用等差数列的性质().7、C【解题分析】
由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.【题目详解】29;30,∴∴A错误;甲的中位数是29,乙的中位数是30,29<30,∴B错误;甲的极差为31﹣26=5,乙的极差为32﹣28=4,5∴D错误;排除可得C选项正确,故选C.【题目点拨】本题考查了由茎叶图求数据的平均数,极差,中位数,运用了选择题的做法即排除法的解题技巧,属于基础题.8、A【解题分析】
根据三角函数的定义,求出,即可得到的值.【题目详解】因为,,所以.故选:A.【题目点拨】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.9、C【解题分析】
根据线线、线面和面面有关定理,对选项逐一分析,由此得出正确选项.【题目详解】对于①,两个平面的垂线垂直,那么这两个平面垂直.所以①正确.对于②,与可能相交,此时并且与两个平面的交线平行.所以②错误.对于③,直线可能为异面直线,所以③错误.对于④,两个平面垂直,那么这两个平面的垂线垂直.所以④正确.综上所述,正确命题的序号为①④.故选:C【题目点拨】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.10、D【解题分析】,当时,对于∵对任意,存在,使得成立,,解得实数的取值范围是.
故选D.【题目点拨】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,二、填空题:本大题共6小题,每小题5分,共30分。11、π【解题分析】
将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【题目详解】因为x-3所以y=33x-33则tanα=33,α=【题目点拨】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.12、2【解题分析】
由向量的模长公式,计算得到答案.【题目详解】因为向量,所以,所以答案为.【题目点拨】本题考查向量的模长公式,属于简单题.13、【解题分析】
理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【题目详解】由题意,方程组的增广矩阵为其系数以及常数项构成的矩阵,故方程组的增广矩阵是.故答案为:【题目点拨】本题考查了二元一次方程组与增广矩阵的关系,需理解增广矩阵的涵义,属于基础题.14、【解题分析】
利用正切函数在单调递增,求得的值域为.【题目详解】因为函数在单调递增,所以,,故函数的值域为.【题目点拨】本题考查利用函数的单调性求值域,注意定义域、值域要写成区间的形式.15、31【解题分析】
根据数列的首项及递推公式依次求出、、……即可.【题目详解】解:,故答案为:【题目点拨】本题考查利用递推公式求出数列的项,属于基础题.16、【解题分析】
由余弦定理写出c与x的等式,再由有两个正解,解出x的取值范围【题目详解】根据余弦定理:代入数据并整理有,有且仅有两个解,记为则:【题目点拨】本题主要考查余弦定理以及韦达定理,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
由已知条件利用等差数列前项和公式求出公差和首项,由此能求出,且,当时,,当时,。【题目详解】解得,设从第项开始大于零,则,即当时,当时,综上有【题目点拨】本题考查数列的前项和的求法,是中档题,注意等差数列的函数性质的运用。18、(1)见解析(2)【解题分析】
(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【题目详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,,设,则,,,则,因此,异面直线和所成角的余弦值为.【题目点拨】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了异面直线所成角的求法,是中档题.19、(Ⅰ)见证明;(Ⅱ)见证明【解题分析】
(Ⅰ)由为菱形,得为中点,进而得到,利用线面平行的判定定理,即可求解;(Ⅱ)先利用线面垂直的判定定理,证得平面,进而利用面面垂直的判定定理,即可证得平面平面.【题目详解】(Ⅰ)证明:因为为菱形,所以为中点,又为中点,所以,,平面,平面,所以,平面;(Ⅱ)因为平面,所以,因为为菱形,所以,,所以,平面,平面,所以,平面平面.【题目点拨】本题考查了线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.20、(Ⅰ)0.008,B的成绩好些(Ⅱ)派A去参赛较合适【解题分析】
(Ⅰ)利用方差的公式,求得S2A>S2B,从而在平均数相同的情况下,B的波动较小,由此得到B的成绩好一些;(Ⅱ)从图中折线趋势可知尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,从而派A去参赛较合适.【题目详解】(Ⅰ)由题意,根据表中的数据,利用方差的计算公式,可得S2B∴S2A>S2B,∴在平均数相同的情况下,B的波动较小,∴B的成绩好些.(Ⅱ)从图中折线趋势可知:尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,∴派A去参赛较合适.【题目点拨】本题主要考查了方差的求法及其应用,同时考查了折线图、方差的性质等基础知识.21、(1)(2)3;(3)【解题分析】
(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030纤维针织衫市场前景分析及投资策略与风险管理研究报告
- 2025-2030粘附监测帽行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 退休返聘人员持续学习协议
- 江西中医药高等专科学校《社会工作导论》2023-2024学年第二学期期末试卷
- 成都工业学院《土木工程结构健康监测》2023-2024学年第二学期期末试卷
- 牡丹江大学《解题方法》2023-2024学年第二学期期末试卷
- 四川应用技术职业学院《病理生理学(B)》2023-2024学年第二学期期末试卷
- 2025年急诊科健康教育推广计划
- 太原理工大学《医用高等数学B》2023-2024学年第二学期期末试卷
- 重庆移通学院《神经系统疾病康复》2023-2024学年第二学期期末试卷
- 西南科技大学机械原理期末考试复习题及答案
- 读后续写:骑马迷路 遇困难不放弃 课件 【知识建构+点播拓展】高考英语作文备考
- 2023年宜兴市云湖茶禅文旅发展有限公司招聘笔试题库及答案解析
- 初中地理会考知识点汇总
- Unit2Reading2知识点课件-高中英语牛津译林版(2020)选择性必修第一册
- 交通协管员劳务外包服务方案
- 顶管工程顶进记录表
- 安全生产、环境保护监督管理制度(最终版)
- 呼吸道病原体抗体检测及临床应用课件
- 战略管理教学ppt课件(完整版)
- 太平歌词唱词
评论
0/150
提交评论