2024届安徽省六安市省示范高中高一数学第二学期期末综合测试模拟试题含解析_第1页
2024届安徽省六安市省示范高中高一数学第二学期期末综合测试模拟试题含解析_第2页
2024届安徽省六安市省示范高中高一数学第二学期期末综合测试模拟试题含解析_第3页
2024届安徽省六安市省示范高中高一数学第二学期期末综合测试模拟试题含解析_第4页
2024届安徽省六安市省示范高中高一数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省六安市省示范高中高一数学第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.22.已知等差数列an的前n项和为18,若S3=1,aA.9 B.21 C.27 D.363.如图,三棱柱中,侧棱底面ABC,,,,则异面直线与所成角的余弦值为()A. B. C. D.4.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.5.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.756.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.1107.如图,为正方体,下面结论错误的是()A.异面直线与所成的角为45° B.平面C.平面平面 D.异面直线与所成的角为45°8.函数图象向右平移个单位长度,所得图象关于原点对称,则在上的单调递增区间为()A. B. C. D.9.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.10.直线的倾斜角为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果数据的平均数是,则的平均数是________.12.______.13.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.14.如图,长方体中,,,,与相交于点,则点的坐标为______________.15.若直线与曲线相交于A,B两点,O为坐标原点,当的面积取最大值时,实数m的取值____.16.若数列满足,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角的对边分别为,已知.(1)证明:;(2)若,求边上的高.18.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:EH∥BD.19.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.20.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.21.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;

直线MN的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【题目详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【题目点拨】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2、C【解题分析】

利用前n项和Sn的性质可求n【题目详解】因为S3而a1所以6Snn【题目点拨】一般地,如果an为等差数列,Sn为其前(1)若m,n,p,q∈N*,m+n=p+q,则am(2)Sn=n(3)Sn=An(4)Sn3、A【解题分析】

以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知求与的坐标,由两向量所成角的余弦值求解异面直线与所成角的余弦值.【题目详解】如图,以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知得:,,所以,.设异面直线与所成角,则故异面直线与所成角的余弦值为.故选:A【题目点拨】本题主要考查了利用空间向量求解线线角的问题,属于基础题.4、C【解题分析】

可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【题目详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【题目点拨】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.5、D【解题分析】

由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【题目详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【题目点拨】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.6、A【解题分析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.7、A【解题分析】

根据正方体性质,依次证明线面平行和面面平行,根据直线的平行关系求异面直线的夹角.【题目详解】根据正方体性质,,所以异面直线与所成的角等于,,,所以不等于45°,所以A选项说法不正确;,四边形为平行四边形,,平面,平面,所以平面,所以B选项说法正确;同理可证:平面,是平面内两条相交直线,所以平面平面,所以C选项说法正确;,异面直线与所成的角等于,所以D选项说法正确.故选:A【题目点拨】此题考查线面平行和面面平行的判定,根据平行关系求异面直线的夹角,考查空间线线平行和线面平行关系的掌握8、A【解题分析】

根据三角函数的图象平移关系结合函数关于原点对称的性质求出的值,结合函数的单调性进行求解即可.【题目详解】函数图象向右平移个单位长度,得到,所得图象关于原点对称,则,得,,∵,∴当时,,则,由,,得,,即函数的单调递增区间为,,∵,∴当时,,即,即在上的单调递增区间为,故选:A.【题目点拨】本题主要考查三角函数的图象和性质,求出函数的解析式结合三角函数的单调性是解决本题的关键.9、B【解题分析】

设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【题目详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选B.【题目点拨】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.10、D【解题分析】

求得直线的斜率,由此求得直线的倾斜角.【题目详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【题目点拨】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】

根据平均数的定义计算.【题目详解】由题意,故答案为:5.【题目点拨】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.12、【解题分析】

先令,得到,两式作差,根据等比数列的求和公式,化简整理,即可得出结果.【题目详解】令,则,两式作差得:所以故答案为:【题目点拨】本题主要考查数列的求和,熟记错位相加法求数列的和即可,属于常考题型.13、【解题分析】

利用古典概型的概率求解.【题目详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【题目点拨】本题考查古典概型,要用计数原理进行计数,属于基础题.14、【解题分析】

易知是的中点,求出的坐标,根据中点坐标公式求解.【题目详解】可知,,由中点坐标公式得的坐标公式,即【题目点拨】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.15、【解题分析】

点O到的距离,将的面积用表示出来,再利用均值不等式得到答案.【题目详解】曲线表示圆心在原点,半径为1的圆的上半圆,若直线与曲线相交于A,B两点,则直线的斜率,则点O到的距离,又,当且仅当,即时,取得最大值.所以,解得舍去).故答案为.【题目点拨】本题考查了点到直线的距离,三角形面积,均值不等式,意在考查学生的计算能力.16、【解题分析】

由递推公式逐步求出.【题目详解】.故答案为:【题目点拨】本题考查数列的递推公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】分析:(1)由,结合正弦定理可得,即;(2)由,结合余弦定理可得,从而可求得边上的高.详解:(1)证明:因为,所以,所以,故.(2)解:因为,所以.又,所以,解得,所以,所以边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.18、证明见解析【解题分析】

证明:平面,平面,且,平面,平面ABD,平面平面,

.19、(1)证明见解析(2)证明见解析【解题分析】

(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【题目详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【题目点拨】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.20、(1);(2),【解题分析】

(1)由,求得,由大边对大角可知均为锐角,利用同角三角函数关系求得,利用两角和差正弦公式求得结果;(2)根据正弦定理得到的关系,代入可求得;利用余弦定理求得.【题目详解】(1)(2)由正弦定理可得:又,解得:,则由余弦定理可得:【题目点拨】本题考查解三角形的相关知识,涉及到同角三角函数关系、两角和差正弦公式、大边对大角的关系、正弦定理和余弦定理的应用等知识,属于常考题型.21、(1);(2).【解题分析】试题分析:(1)边AC的中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为1,同理,B,C两点的纵坐标和的平均数为1.构造方程易得C点的坐标.(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即可求出直线MN的方程.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论