2024届上海理工大附中高一数学第二学期期末质量跟踪监视试题含解析_第1页
2024届上海理工大附中高一数学第二学期期末质量跟踪监视试题含解析_第2页
2024届上海理工大附中高一数学第二学期期末质量跟踪监视试题含解析_第3页
2024届上海理工大附中高一数学第二学期期末质量跟踪监视试题含解析_第4页
2024届上海理工大附中高一数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海理工大附中高一数学第二学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A、B、C的对边分别为a、b、c,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形2.对于复数,定义映射.若复数在映射作用下对应复数,则复数在复平面内对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限3.若直线与直线平行,则的值为()A.1 B.﹣1 C.±1 D.04.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.5.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是()A.“至少1名男生”与“全是女生”B.“至少1名男生”与“至少有1名是女生”C.“至少1名男生”与“全是男生”D.“恰好有1名男生”与“恰好2名女生”6.已知点,和向量,若,则实数的值为()A. B. C. D.7.在中,角A、B、C的对边分别为a、b、c,若,则角()A. B. C. D.8.已知数列满足,则()A. B. C. D.9.等比数列的前n项和为,且,,成等差数列.若,则()A.15 B.7 C.8 D.1610.在平面直角坐标系中,为坐标原点,为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的坐标为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,正方体的棱长为3,以其所有面的中心为顶点的多面体的体积为_____.12.在平面直角坐标系中,点在第二象限,,,则向量的坐标为________.13.在三棱锥中,,,,作交于,则与平面所成角的正弦值是________.14.等差数列中,则此数列的前项和_________.15.已知且,则________16.若直线与圆相交于,两点,且(其中为原点),则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量(),向量,,且.(Ⅰ)求向量;(Ⅱ)若,,求.18.已知圆过点,,圆心在直线上,是直线上任意一点.(1)求圆的方程;(2)过点向圆引两条切线,切点分别为,,求四边形的面积的最小值.19.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.20.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.(1)若点的坐标为,求椭圆的方程及的值;(2)若,求椭圆的离心率的取值范围.21.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由正弦定理化简,得到,由此得到三角形是等腰或直角三角形,得到答案.【题目详解】由题意知,,结合正弦定理,化简可得,所以,则,所以,得或,所以三角形是等腰或直角三角形.故选D.【题目点拨】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.2、A【解题分析】,对应点,在第四象限.3、B【解题分析】

两直线平行表示斜率相同或者都垂直x轴,即。【题目详解】当时,两直线分别为:与直线,不平行,当时,直线化为:直线化为:,两直线平行,所以,,解得:,当时,两直线重合,不符,所以,【题目点拨】直线平行即表示斜率相同,且截距不同,如果截距相同则表示同一条直线。4、A【解题分析】

用累乘法可得.利用错位相减法可得S,即可求解S10=22.【题目详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.5、D【解题分析】

从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”.选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确.选D.6、B【解题分析】

先求出,再利用共线向量的坐标表示求实数的值.【题目详解】由题得,因为,所以.故选:B【题目点拨】本题主要考查向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.7、C【解题分析】

利用余弦定理求三角形的一个内角的余弦值,可得的值,得到答案.【题目详解】在中,因为,即,利用余弦定理可得,又由,所以,故选C.【题目点拨】本题主要考查了余弦定理的应用,其中解答中根据题设条件,合理利用余弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解题分析】

分别令,求得不等式,由此证得成立.【题目详解】当时,,当时,,当时,,所以,所以,故选B.【题目点拨】本小题主要考查根据数列递推关系判断项的大小关系,属于基础题.9、B【解题分析】

通过,,成等差数列,计算出,再计算【题目详解】等比数列的前n项和为,且,,成等差数列即故答案选B【题目点拨】本题考查了等比数列通项公式,等差中项,前N项和,属于常考题型.10、C【解题分析】

由题意利用任意角的三角函数的定义,诱导公式,求得点的坐标.【题目详解】为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的横坐标为,点的纵坐标为,故点的坐标为.故选C.【题目点拨】本题主要考查任意角的三角函数的定义,诱导公式,考查基本的运算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

该多面体为正八面体,将其转化为两个正四棱锥,通过计算两个正四棱锥的体积计算出正八面体的体积.【题目详解】以正方体所有面的中心为顶点的多面体为正八面体,也可以看作是两个正四棱锥的组合体,每一个正四棱锥的侧棱长与底面边长均为.则其中一个正四棱锥的高为h.∴该多面体的体积V.故答案为:【题目点拨】本小题主要考查正八面体、正四棱锥体积的计算,属于基础题.12、【解题分析】

由三角函数的定义求出点的坐标,然后求向量的坐标.【题目详解】设点,由三角函数的定义有,得,,得,所以,所以故答案为:【题目点拨】本题考查三角函数的定义的应用和已知点的坐标求向量坐标,属于基础题.13、【解题分析】

取中点,中点,易得面,再求出到平面的距离,进而求解再得出到平面的距离.从而算得与平面所成角的正弦值即可.【题目详解】如图,取中点,中点,连接.因为,,所以.因为,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距离.到面的距离.又因为,所以,所以,所以,故到面的距离.故与平面所成角的正弦值是故答案为:【题目点拨】本题主要考查了空间中线面垂直的性质与运用,同时也考查了余弦定理在三角形中求线段与角度正余弦值的方法,需要根据题意找到点到面的距离求解,再求出线面的夹角.属于难题.14、180【解题分析】由,,可知.15、【解题分析】

根据数列极限的方法求解即可.【题目详解】由题,故.又.故.故.故答案为:【题目点拨】本题主要考查了数列极限的问题,属于基础题型.16、【解题分析】

首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【题目详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【题目点拨】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)∵,,∵,∴,即,①又,②由①②联立方程解得,,.∴;(Ⅱ)∵,即,,∴,,又∵,,∴.18、(1)(2)【解题分析】

(1)首先列出圆的标准方程,根据条件代入,得到关于的方程求解;(2)根据切线的对称性,可知,,这样求面积的最小值即是求的最小值,当点是圆心到直线的距离的垂足时,最小.【题目详解】解:(1)设圆的方程为.由题意得解得故圆的方程为.另解:先求线段的中垂线与直线的交点,即解得从而得到圆心坐标为,再求,故圆的方程为.(2)设四边形的面积为,则.因为是圆的切线,所以,所以,即.因为,所以.因为是直线上的任意一点,所以,则,即.故四边形的面积的最小值为.【题目点拨】本题考查了圆的标准方程,和与圆,切线有关的最值的计算,与圆有关的最值计算,需注意数形结合.19、(1)证明见解析,(2)【解题分析】

(1)当时,结合可求得;当且时,利用可整理得,可证得数列为等比数列;根据等比数列通项公式可求得结果;(2)根据等比数列求和公式求得,代入可得;分别在为奇数和为偶数两种情况下根据恒成立,采用分离变量的方法得到的范围,综合可得结果.【题目详解】(1)当时,,又当且时,数列是以为首项,为公比的等比数列(2)由(1)知:当为奇数时,,即:恒成立当为偶数时,,即:综上所述,若对恒成立,则【题目点拨】本题考查等比数列知识的综合应用,涉及到利用与关系证明数列为等比数列、等比数列通项公式和求和公式的应用、恒成立问题的求解;本题解题关键是能够进行合理分类,分别在两种情况下求解参数的范围,最终取交集得到结果.20、(1);(2)【解题分析】

(1)把的坐标代入方程得到,结合解出后可得标准方程.求出直线的方程,联立椭圆方程和直线方程后可求的坐标,故可得的值.(2)因,故可用表示的坐标,利用它在椭圆上可得与的关系,化简后可得与离心率的关系,由的范围可得的范围.【题目详解】(1)因为垂直于轴,且点的坐标为,所以,,解得,,所以椭圆的方程为.所以,直线的方程为,将代入椭圆的方程,解得,所以.(2)因为轴,不妨设在轴上方,,.设,因为在椭圆上,所以,解得,即.(方法一)因为,由得,,,解得,,所以.因为点在椭圆上,所以,即,所以,从而.因为,所以.解得,所以椭圆的离心率的取值范围.【题目点拨】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.圆锥曲线中的离心率的计算或范围问题,关键是利用题设条件构建关于的一个等式关系或不等式关系,其中不等式关系的构建需要利用题设中的范围、坐标的范围、几何量的范围或点的位置等.21、(1),;(2).【解题分析】

(1)由函数的图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式.(2)利用正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论