天津市和平区名校2024届数学高一第二学期期末考试模拟试题含解析_第1页
天津市和平区名校2024届数学高一第二学期期末考试模拟试题含解析_第2页
天津市和平区名校2024届数学高一第二学期期末考试模拟试题含解析_第3页
天津市和平区名校2024届数学高一第二学期期末考试模拟试题含解析_第4页
天津市和平区名校2024届数学高一第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市和平区名校2024届数学高一第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.sin480°等于()A. B. C. D.2.已知点,,则与向量的方向相反的单位向量是()A. B. C. D.3.已知直线倾斜角的范围是,则此直线的斜率的取值范围是()A. B.C. D.4.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.5.在长方体中,,,则异面直线与所成角的余弦值为()A. B. C. D.6.角α的终边上有一点P(a,|a|),a∈R且a≠0,则sinα值为()A. B. C.1 D.或7.已知数列满足,,则的值为()A. B. C. D.8.直线l:的倾斜角为()A. B. C. D.9.若,直线的倾斜角等于()A. B. C. D.10.在中,是的中点,是上的一点,且,若,则实数()A.2 B.3 C.4 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列中,若,,则______.12.已知等差数列中,,则_______13.已知,,若,则______14.已知函数,若,且,则__________.15.已知满足约束条件,则的最大值为__16.已知,,,的等比中项是1,且,,则的最小值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.求和的值.18.已知二次函数满足以下要求:①函数的值域为;②对恒成立。求:(1)求函数的解析式;(2)设,求时的值域。19.在等比数列中,.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知数列的前项和为,满足,,数列满足,,且.(1)求数列的通项公式;(2)求证:数列是等差数列,求数列的通项公式;(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.21.已知直线的方程为.(1)求直线所过定点的坐标;(2)当时,求点关于直线的对称点的坐标;(3)为使直线不过第四象限,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:因为,所以选D.考点:诱导公式,特殊角的三角函数值.2、A【解题分析】

根据单位向量的定义即可求解.【题目详解】,向量的方向相反的单位向量为,故选A.【题目点拨】本题主要考查了向量的坐标运算,向量的单位向量的概念,属于中档题.3、B【解题分析】

根据直线的斜率等于倾斜角的正切值求解即可.【题目详解】因为直线倾斜角的范围是,又直线的斜率,.故或.故.故选:B【题目点拨】本题主要考查了直线斜率与倾斜角的关系,属于基础题.4、D【解题分析】

根据平均数和方差的公式,可推导出,,,的平均数和方差.【题目详解】因为,所以,所以的平均数为;因为,所以,故选:D.【题目点拨】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.5、C【解题分析】

连接,交于,取的中点,连接、,可以证明是异面直线与所成角,利用余弦定理可求其余弦值.【题目详解】连接,交于,取的中点,连接.由长方体可得四边形为矩形,所以为的中点,因为为的中点,所以,所以或其补角是异面直线与所成角.在直角三角形中,则,,所以.在直角三角形中,,在中,,故选C.【题目点拨】空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.6、B【解题分析】

根据三角函数的定义,求出OP,即可求出的值.【题目详解】因为,所以,故选B.【题目点拨】本题主要考查三角函数的定义应用.7、B【解题分析】

由,得,然后根据递推公式逐项计算出、的值,即可得出的值.【题目详解】,,则,,,因此,,故选B.【题目点拨】本题考查数列中相关项的计算,解题的关键就是递推公式的应用,考查计算能力,属于基础题.8、C【解题分析】

由直线的斜率,又,再求解即可.【题目详解】解:由直线l:,则直线的斜率,又,所以,即直线l:的倾斜角为,故选:C.【题目点拨】本题考查了直线倾斜角的求法,属基础题.9、A【解题分析】

根据以及可求出直线的倾斜角.【题目详解】,,且直线的斜率为,因此,直线的倾斜角为.故选:A.【题目点拨】本题考查直线倾斜角的计算,要熟悉斜率与倾斜角之间的关系,还要根据倾斜角的取值范围来求解,考查计算能力,属于基础题.10、C【解题分析】

选择以作为基底表示,根据变形成,即可求解.【题目详解】在中,根据平行四边形法则,有,是的中点,,由题:,即,,,所以,所以解得:故选:C【题目点拨】此题考查平面向量的线性运算,根据平面向量基本定理处理系数关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

设的首项为,公比为,根据,列出方程组,求出和即可得解.【题目详解】设的首项为,公比为,则:,解之得,所以:.故答案为:.【题目点拨】本题考查等比数列中某项的求法,解题关键是根据题意列出方程组,需要注意的是为了简化运算不用直接求解,解出即可,属于基础题.12、【解题分析】

设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【题目详解】设等差数列的公差为,则,因此,,故答案为:。【题目点拨】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。13、【解题分析】

根据向量垂直的坐标表示列出等式,求出,再利用二倍角公式、平方关系即可求出.【题目详解】由得,,解得,.【题目点拨】本题主要考查了向量垂直的坐标表示以及二倍角公式、平方关系的应用.14、2【解题分析】不妨设a>1,

则令f(x)=|loga|x-1||=b>0,

则loga|x-1|=b或loga|x-1|=-b;

故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,

故故答案为2点睛:本题考查了绝对值方程及对数运算的应用,同时考查了指数的运算,注意计算的准确性.15、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由约束条件作出可行域,如图所示,化目标函数为,由图可得,当直线过时,直线在轴上的截距最大,所以有最大值为.故答案为1.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16、4【解题分析】

,的等比中项是1,再用均值不等式得到答案.【题目详解】,的等比中项是1当时等号成立.故答案为4【题目点拨】本题考查了等比中项,均值不等式,意在考查学生的综合应用能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,【解题分析】

把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【题目详解】解:,两边同时平方可得:,又,,∴∴,∴【题目点拨】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.18、(1);(2)【解题分析】

(1)将写成顶点式,然后根据最小值和对称轴进行分析;(2)先将表示出来,然后利用换元法以及对勾函数的单调性求解值域.【题目详解】解:(1)∵又∵∴对称轴为∵值域为∴且∴,,则函数(2)∵∵∴令,则∴∵∴,则所求值域为【题目点拨】对于形如的函数,其单调增区间是:和,单调减区间是:和.19、(1)(2)【解题分析】

(1)利用条件求数列的首项与公比,确定所求.(2)将分组,,再利用等比数列前n项和公式求和【题目详解】解:(1)设等比数列的公比为,所以,由,所以,则;(2),所以数列的前项和,则数列的前项和.【题目点拨】本题考查等比数列的通项,分组求和法,考查计算能力,属于中档题.20、(1);(2)证明见解析,;(3)或.【解题分析】

(1)运用数列的递推式以及数列的和与通项的关系可得,再由等比数列的定义、通项公式可得结果;(2)对等式两边除以,结合等差数列的定义和通项公式,可得所求;(3)求得,由数列的错位相减法求和,可得,化简,即,对任意的成立,运用数列的单调性可得最大值,解不等式可得所求范围.【题目详解】(1),可得,即;时,,又,相减可得,即,则;(2)证明:,可得,可得是首项和公差均为1的等差数列,可得,即;(3),前n项和为,,相减可得,可得,,即为,即,对任意的成立,由,可得为递减数列,即n=1时取得最大值1−2=−1,可得,即或.【题目点拨】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.21、(1);(2);(3)【解题分析】

(1)把直线化简为,所以直线过定点(1,1);(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论