版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
任意角的三角函数教学案例占宇志一、教学内容解析这是一堂关于任意角的三角函数的概念课.在初中,学生已学过锐角三角函数,知道直角三角形中锐角的三角函数等于相应边长的比值.随着本章将角的概念推广,以及引入弧度制后,这里相应地也要将锐角三角函数推广为任意角的三角函数.认识它需要借助单位圆、角的终边以及二者的交点这些几何图形的直观帮助,这中间体现了数形结合的思想.所以它不仅是三角函数内容的核心概念,同时在高中数学中还占有重要的地位.本节课将围绕任意角三角函数的概念展开,任意角三角函数的定义是这节课的重点,能够利用单位圆认识该定义是解决教学的重点。二、教学目标解析1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义:2.在借助单位圆认识任意角三角函数的定义的过程中,体会数形结合的思想,并利用这一思想解决有关定义应用的问题.三、教学问题诊断分析1.学生在理解用终边上任意一点的坐标来表示锐角三角函数时可能会出现障碍,原因是学生在此之前都是研究直角三角形中锐角的三角函数,并习惯了直观地用有关边长的比值来表示锐角三角函数.要克服这一困难,关键是帮助学生建立终边上点的坐标的比值与直角三角形有关边长的比值的联系.2.学生在将用单位圆定义锐角三角函数推广到定义任意角的三角函数时,还可能会出现障碍,主要原因还是受初中锐角三角函数定义的影响,仍然局限在直角三角形中思考问题.要帮助学生克服这一困难,就要让学生知道,借助单位圆,用终边与单位圆交点的坐标来表示三角函数,就是为了很好地解决在直角三角形中不能定义任意角的三角函数的问题,用单位圆统一定义三角函数,不仅没有改变初中锐角三角函数定义的本质,同时还能定义任意角的三角函数.四、教学过程设计(一)教学基本流程
(二)教学情景1.复习锐角三角函数的定义问题1:在初中,我们已经学过锐角三角函数.如图1,在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?
设计意图:帮助学生回顾初中锐角三角函数的定义.师生活动:教师提出问题,学生回答.2.认识任意角三角函数的定义问题2:在上节教科书的学习中,我们已经将角的概念推广到了任意角,现在所说的角可以是任意大小的正角、负角和零角.那么任意角的三角函数又该怎样定义呢?设计意图:引导学生将锐角三角函数推广到任意角三角函数.师生活动:在教学中,可以根据学生的实际情况,利用下列问题引导学生进行思考:(1)能不能继续在直角三角形中定义任意角的三角函数?(2)在上节教科书中,将锐角的概念推广到任意角时,我们是把角放在哪里进行研究的?(3)如图2,在平面直角坐标系中,如何定义任意角α的三角函数呢?
(4)终边是OP的角一定是锐角吗?如果不是,能利用直角三角形的边长来定义吗?如图3,如果角α的终边不在第I象限又该怎么办?
(5)我们知道,借助平面直角坐标系,就可以把几何问题代数化,比如把点用坐标表示,把线段的长用坐标算出来.我们还是回到锐角三角函数的问题上,大家能不能用平面直角坐标系中角的终边上的点的坐标来表示定义式中的三条边长呢?渗透数形结合的思想.(6)利用平面直角坐标系中角的终边上的点的坐标来定义有什么好处?问题3:大家有没有办法让所得到的定义式变得更简单一点?设计意图:为引入单位圆进行铺垫.师生活动:教师提出问题后,可组织学生展开讨论.问题4:大家现在能不能给出任意角三角函数的定义了?设计意图:引导学生在借助单位圆定义锐角三角函数的基础上,进一步给出任意角三角函数的定义.师生活动:由学生给出任意角三角函数的定义,教师进行整理.问题5:根据任意角三角函数的定义,要求角α的三个三角函数值其实就是分别是求什么?设计意图:让学生从中体会,用单位圆上点的坐标定义三角函数不仅简化了定义式,还更能突出三角函数概念的本质.师生活动:在学生回答问题的基础上,引导学生利用定义求三角函数值.例1:已知角α的终边经过点,求角α的正弦、余弦和正切值.变式1:求的正弦、余弦和正切值.变式2:已知角α的终边经过点P(-3,-4),求角α的正弦、余弦和正切值.3.进一步理解任意角三角函数的概念问题6:你能否给出正弦、余弦、正切函数在弧度制下的定义域?设计意图:研究一个函数,就要研究其三要素,而三要素中最本质的则是对应法则和定义域.三角函数的对应法则已经由定义式给出,所以在给出定义之后就要研究其定义域.通过利用定义求定义域,既完善了三角函数概念的内容,同时又可帮助学生进一步理解三角函数的概念.师生活动:学生求出定义域,教师进行整理.例2:求证:(1)当不等式组成立时,角θ为第三象限角;(2)当角θ为第三象限角时,不等式组成立.4.练习1.设α是三角形的一个内角,在sinα,cosα,tanα,中,有可能取负值的是.3.选择①sinθ>0,②sinθ<0,③cosθ>0,④cosθ<0,⑤tanθ>0,⑥tanθ<0中适当的关系式的序号填空:(1)当角θ为第一象限角时,
,反之也对;(2)当角θ为第二象限角时,
,反之也对;(3)当角θ为第三象限角时,
,反之也对;(4)当角θ为第四象限角时,
,反之也对.5.已知角θ的终边经过点P(-12,5),求角θ的正弦、余弦和正切值.5.小结问题9:锐角三角函数与解直角三角形直接相关,初中我们是利用直角三角形边的比值来表示其锐角的三角函数.通过今天的学习,我们知道任意角的三角函数虽然是锐角三角函数的推广。我们是利用单位圆来定义任意角的三角函数,借助直角坐标系中的单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职(机电技术应用)机械基础期末测试题及解析
- 2025年大二(旅游管理)景区规划与管理期末试题
- 2025年大学园艺学(园艺产品贮藏加工学)试题及答案
- 2026年审计咨询(审计服务)考题及答案
- 2025年高职第二学年(导游服务类)景区讲解综合测试试题及答案
- 2025年高职无人机应用技术(无人机工程创意)试题及答案
- 2025年中职网络技术(无线网络搭建)试题及答案
- 2026年海南体育职业技术学院高职单招职业适应性测试备考试题有答案解析
- 2026年福建体育职业技术学院单招职业技能考试模拟试题带答案解析
- 2026年滁州职业技术学院高职单招职业适应性测试备考题库有答案解析
- 婚外赔偿协议书
- 血小板减少紫癜课件
- 2025年大学公共管理(公共管理学)试题及答案
- 雨课堂学堂在线学堂云《药物信息学(山东大学 )》单元测试考核答案
- 钢结构波形梁护栏技术说明书
- 新能源车电池性能检测报告范本
- 2025年春新沪粤版物理八年级下册全册教案
- 2025年上海市嘉定区高考生物二模试卷
- 量子医学课件
- 2025年秋闽教版小学英语五年级上册(期末)综合词汇句子专项训练题及答案
- 大学消防风险评估报告
评论
0/150
提交评论