2024届惠州市重点中学数学高一下期末统考模拟试题含解析_第1页
2024届惠州市重点中学数学高一下期末统考模拟试题含解析_第2页
2024届惠州市重点中学数学高一下期末统考模拟试题含解析_第3页
2024届惠州市重点中学数学高一下期末统考模拟试题含解析_第4页
2024届惠州市重点中学数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届惠州市重点中学数学高一下期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知双曲线的焦点与椭圆的焦点相同,则双曲线的离心率为()A. B. C. D.22.已知等差数列的前项和为,若,则()A.18 B.13 C.9 D.73.若点,关于直线l对称,则l的方程为()A. B.C. D.4.若某程序框图如图所示,则该程序运行后输出的值是()A.3 B.4 C.5 D.65.若,则A. B. C. D.6.已知数列为等差数列,若,则()A. B. C. D.7.若角的顶点与坐标原点重合,始边与x轴的正半轴重合,终边经过点,则()A. B. C. D.8.点是空间直角坐标系中的一点,过点作平面的垂线,垂足为,则点的坐标为()A.(1,0,0) B. C. D.9.在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以Ox为始边,OP为终边,若,则P所在的圆弧最有可能的是()A. B. C. D.10.向量,,若,则()A.5 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.执行如图所示的程序框图,则输出的_______.12.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.13.已知满足约束条件,则的最大值为__14.若不等式的解集为空集,则实数的能为___________.15.已知等差数列满足,则__________.16.已知直线与相互垂直,且垂足为,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.18.已知平面向量,且(1)若是与共线的单位向量,求的坐标;(2)若,且,设向量与的夹角为,求.19.已知两点,.(1)求直线AB的方程;(2)直线l经过,且倾斜角为,求直线l与AB的交点坐标.20.某算法框图如图所示.(1)求函数的解析式及的值;(2)若在区间内随机输入一个值,求输出的值小于0的概率.21.如图,已知是半径为1,圆心角为的扇形,是扇形狐上的动点,点分别在半径上,且是平行四边形,记,四边形的面积为,问当取何值时,最大?的最大值是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据椭圆可以知焦点为,离心率,故选B.2、B【解题分析】

利用等差数列通项公式、前项和列方程组,求出,.由此能求出.【题目详解】解:等差数列的前项和为,,,,解得,..故选:.【题目点拨】本题考查等差数列第7项的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.3、A【解题分析】

根据A,B关于直线l对称,直线l经过AB中点且直线l和AB垂直,可得l的方程.【题目详解】由题意可知AB中点坐标是,,因为A,B关于直线l对称,所以直线l经过AB中点且直线l和AB垂直,所以直线l的斜率为,所以直线l的方程为,即,故选:A.【题目点拨】本题考查直线位置关系的应用,垂直关系利用斜率之积为求解,属于简单题.4、C【解题分析】

根据程序框图依次计算得到答案.【题目详解】根据程序框图依次计算得到结束故答案为C【题目点拨】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.5、B【解题分析】

分析:由公式可得结果.详解:故选B.点睛:本题主要考查二倍角公式,属于基础题.6、D【解题分析】

由等差数列的性质可得a7=,而tan(a2+a12)=tan(2a7),代值由三角函数公式化简可得.【题目详解】∵数列{an}为等差数列且a1+a7+a13=4π,∴a1+a7+a13=3a7=4π,解得a7=,∴tan(a2+a12)=tan(2a7)=tan=tan(3π﹣)=﹣tan=﹣故选D.【题目点拨】本题考查等差数列的性质,涉及三角函数中特殊角的正切函数值的运算,属基础题.7、C【解题分析】

根据三角函数定义结合正弦的二倍角公式计算即可【题目详解】由题意,∴,,.故选:C.【题目点拨】本题考查三角函数的定义,考查二倍角的正弦公式,掌握三角函数定义是解题关键.8、B【解题分析】

根据空间直角坐标系的坐标关系,即可求得点的坐标.【题目详解】空间直角坐标系中点过点作平面的垂线,垂足为,可知故选:B【题目点拨】本题考查了空间直角坐标系及坐标关系,属于基础题.9、A【解题分析】

根据三角函数线的定义,分别进行判断排除即可得答案.【题目详解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,则cosα<sinα<tanα;若P在EF段,正切,余弦为负值,正弦为正,tanα<cosα<sinα;若P在GH段,正切为正值,正弦和余弦为负值,cosα<sinα<tanα.∴P所在的圆弧最有可能的是.故选:A.【题目点拨】本题任意角的三角函数的应用,根据角的大小判断角的正弦、余弦、正切值的正负及大小,为基础题.10、A【解题分析】

由已知等式求出,再根据模的坐标运算计算出模.【题目详解】由得,解得.∴,,.故选:A.【题目点拨】本题考查求向量的模,考查向量的数量积,及模的坐标运算.掌握数量积和模的坐标表示是解题基础.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

按照程序框图运行程序,直到a的值满足a>100时,输出结果即可.【题目详解】第一次循环:a=3;第二次循环:a=7;第三次循环:a=15;第四次循环:a=31;第五次循环:a=63;第六次循环:a=127,a>100,所以输出a.所以本题答案为127.【题目点拨】本题考查根据程序框图中的循环结构计算输出结果的问题,属于基础题.12、【解题分析】

由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【题目详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【题目点拨】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.13、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由约束条件作出可行域,如图所示,化目标函数为,由图可得,当直线过时,直线在轴上的截距最大,所以有最大值为.故答案为1.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14、【解题分析】

根据分式不等式,移项、通分并等价化简,可得一元二次不等式.结合二次函数恒成立条件,即可求得的值.【题目详解】将不等式化简可得即的解集为空集所以对于任意都恒成立将不等式等价化为即恒成立由二次函数性质可知化简不等式可得解得故答案为:【题目点拨】本题考查了分式不等式的解法,将不等式等价化为一元二次不等式,结合二次函数性质解决恒成立问题,属于中档题.15、【解题分析】

由等差数列的性质计算.【题目详解】∵是等差数列,∴,∴.故答案为:1.【题目点拨】本题考查等差数列的性质,属于基础题.等差数列的性质如下:在等差数列中,,则.16、【解题分析】

先由两直线垂直,可求出的值,将垂足点代入直线的方程可求出的点,再将垂足点代入直线的方程可求出的值,由此可计算出的值.【题目详解】,,解得,直线的方程为,即,由于点在直线上,,解得,将点的坐标代入直线的方程得,解得,因此,.故答案为:.【题目点拨】本题考查了由两直线垂直求参数,以及由两直线的公共点求参数,考查推理能力与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等式求得最值,即可求解.【题目详解】(1)由题意,要使不等式恒成立,①当时,显然成立,所以时,不等式恒成立;②当时,只需,解得,综上所述,实数的取值范围为.(2)要使对于恒成立,只需恒成立,只需,又因为,只需,令,则只需即可因为,当且仅当,即时等式成立;因为,所以,所以.【题目点拨】本题主要考查了含参数的不等式的恒成立问题的求解,其中解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及转化思想的应用,属于基础题.18、或【解题分析】分析:(1)由与共线,可设,又由为单位向量,根据,列出方程即可求得向量的坐标;(2)根据向量的夹角公式,即可求解向量与的夹角.详解:与共线,又,则,为单位向量,,或,则的坐标为或,,.点睛:对于平面向量的运算问题,通常用到:1、平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;2、由向量的数量积的性质有,,,因此利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题;3、本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立的方程.19、(1);(2).【解题分析】

(1)根据、两点的坐标,得到斜率,再由点斜式得到直线方程;(2)根据的倾斜角和过点,得到的方程,再与直线联立,得到交点坐标.【题目详解】(1)因为点,,所以,所以方程为,整理得;(2)因为直线l经过,且倾斜角为,所以直线的斜率为,所以的方程为,整理得,所以直线与直线的交点为,解得,所以交点坐标为.【题目点拨】本题考查点斜式求直线方程,求直线的交点坐标,属于简单题.20、(1);(2)【解题分析】

(1)从程序框图可提炼出分段函数的函数表达式,从而计算得到的值;(2)此题为几何概型,分类讨论得到满足条件下的函数x值,从而求得结果.【题目详解】(1)由算法框图得:当时,,当时,,当时,,,(2)当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论