2024届陕西省西安市西工大附中高一数学第二学期期末检测模拟试题含解析_第1页
2024届陕西省西安市西工大附中高一数学第二学期期末检测模拟试题含解析_第2页
2024届陕西省西安市西工大附中高一数学第二学期期末检测模拟试题含解析_第3页
2024届陕西省西安市西工大附中高一数学第二学期期末检测模拟试题含解析_第4页
2024届陕西省西安市西工大附中高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省西安市西工大附中高一数学第二学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则的值域为()A. B.C. D.2.已知正三角形ABC边长为2,D是BC的中点,点E满足,则()A. B. C. D.-13.若函数则()A. B. C. D.4.某产品的广告费用(单位:万元)与销售额(单位:万元)的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元5.设,若不等式恒成立,则实数a的取值范围是()A. B. C. D.6.的值为A. B. C. D.7.已知数列满足,则()A.2 B. C. D.8.已知函数与的图象上存在关于轴对称的点,则实数的取值范围是().A. B. C. D.9.已知等比数列{an}中,a3•a13=20,a6=4,则a10的值是()A.16 B.14 C.6 D.510.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分图象如图所示,则f()=________.12.函数的定义域为___________.13.已知函数,该函数零点的个数为_____________14.若集合,,则集合________.15.已知:,则的取值范围是__________.16.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过点,,圆心在直线上,是直线上任意一点.(1)求圆的方程;(2)过点向圆引两条切线,切点分别为,,求四边形的面积的最小值.18.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?19.已知数列满足,.(1)证明:数列是等差数列,并求数列的通项公式;(2)设,数列的前n项和为,求使不等式<对一切恒成立的实数的范围.20.已知,,且(1)求的定义域.(2)判断的奇偶性,并说明理由.21.已知(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据正弦型函数的周期性可求得最小正周期,从而可知代入即可求得所有函数值.【题目详解】由题意得,最小正周期:;;;;;且值域为:本题正确选项:【题目点拨】本题考查正弦型函数值域问题的求解,关键是能够确定函数的最小正周期,从而计算出一个周期内的函数值.2、C【解题分析】

化简,分别计算,,代入得到答案.【题目详解】正三角形ABC边长为2,D是BC的中点,点E满足故答案选C【题目点拨】本题考查了向量的计算,将是解题的关键,也可以建立直角坐标系解得答案.3、B【解题分析】

首先根据题意得到,再计算即可.【题目详解】……,.故选:B【题目点拨】本题主要考查分段函数值的求法,同时考查了指数幂的运算,属于简单题.4、B【解题分析】

试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元考点:回归方程5、D【解题分析】

由题意可得恒成立,讨论,,运用基本不等式,可得最值,进而得到所求范围.【题目详解】恒成立,即为恒成立,当时,可得的最小值,由,当且仅当取得最小值8,即有,则;当时,可得的最大值,由,当且仅当取得最大值,即有,则,综上可得.故选.【题目点拨】本题主要考查不等式恒成立问题的解法,注意运用参数分离和分类讨论思想,以及基本不等式的应用,意在考查学生的转化思想、分类讨论思想和运算能力.6、B【解题分析】

试题分析:由诱导公式得,故选B.考点:诱导公式.7、B【解题分析】

利用数列的递推关系式,逐步求解数列的即可.【题目详解】解:数列满足,,所以,.故选:B.【题目点拨】本题主要考查数列的递推关系式的应用,属于基础题.8、A【解题分析】若函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的图象是开口朝上,且以直线x=1为对称轴的抛物线,故当x=1时,g(x)取最小值﹣2,当x=2时,函数取最大值﹣1,故a∈[﹣2,﹣1],故选:A.点睛:图像上存在关于轴对称的点,即方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,转化为方程有解求参的问题,变量分离,画出函数图像,使得函数图像和常函数图像有交点即可;这是解决方程有解,图像有交点,函数有零点的常见方法。9、D【解题分析】

用等比数列的性质求解.【题目详解】∵是等比数列,∴,∴.故选D.【题目点拨】本题考查等比数列的性质,灵活运用等比数列的性质可以很快速地求解等比数列的问题.在等比数列中,正整数满足,则,特别地若,则.10、B【解题分析】

①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【题目详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【题目点拨】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】

根据图象看出周期、特殊点的函数值,解出待定系数即可解得.【题目详解】由图可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【题目点拨】本题考查由图象求正切函数的解析式,属于中档题。12、【解题分析】试题分析:由题设可得,解之得,故应填答案.考点:函数定义域的求法及运用.13、3【解题分析】

令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【题目详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【题目点拨】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.14、【解题分析】由题意,得,,则.15、【解题分析】

由已知条件将两个角的三角函数转化为一个角的三角函数,再运用三角函数的值域求解.【题目详解】由已知得,所以,又因为,所以,解得,所以,故填.【题目点拨】本题考查三角函数的值域,属于基础题.16、【解题分析】

,,是平面内两个相互垂直的单位向量,∴,∴,,,为与的夹角,∵是平面内两个相互垂直的单位向量∴,即,所以当时,即与共线时,取得最大值为,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)首先列出圆的标准方程,根据条件代入,得到关于的方程求解;(2)根据切线的对称性,可知,,这样求面积的最小值即是求的最小值,当点是圆心到直线的距离的垂足时,最小.【题目详解】解:(1)设圆的方程为.由题意得解得故圆的方程为.另解:先求线段的中垂线与直线的交点,即解得从而得到圆心坐标为,再求,故圆的方程为.(2)设四边形的面积为,则.因为是圆的切线,所以,所以,即.因为,所以.因为是直线上的任意一点,所以,则,即.故四边形的面积的最小值为.【题目点拨】本题考查了圆的标准方程,和与圆,切线有关的最值的计算,与圆有关的最值计算,需注意数形结合.18、(1),;(2)至少经过5年,旅游业的总收入才能超过总投入.【解题分析】

(1)利用等比数列求和公式可求出n年内的旅游业总收入与n年内的总投入;(2)设至少经过年旅游业的总收入才能超过总投入,可得->0,结合(1)可得,解得,进而可得结果.【题目详解】(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少经过5年,旅游业的总收入才能超过总投入.【题目点拨】本题主要考查阅读能力及建模能力、等比数列的求和公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19、(1)见解析,;(2)【解题分析】

(1)对递推式两边取倒数化简,即可得出,利用等差数列的通项公式得出,再得出;(2)由(1)得,再使用裂项相消法求出,使用不等式得出的范围,从而得出的范围.【题目详解】(1)∵,两边取倒数,∴,即,又,∴数列是以1为首项,2为公差的等差数列,∴,∴.(2)由(1)得,∴=,要使不等式Sn<对一切恒成立,则.∴的范围为:.【题目点拨】本题考查了构造法求等差数列的通项公式,裂项相消法求数列的和,属于中档题.20、(1);(2)偶函数,理由见解析.【解题分析】

(1)根据对数的真数大于零可求得和的定义域,取交集可得定义域;(2)整理可得,验证得,得到函数为偶函数.【题目详解】(1)令得:定义域为令得:定义域为的定义域为(2)由题意得:,为定义在上的偶函数【题目点拨】本题考查函数定义域的求解、奇偶性的判断

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论