2024届福建省晋江市永春县第一中学数学高一第二学期期末复习检测试题含解析_第1页
2024届福建省晋江市永春县第一中学数学高一第二学期期末复习检测试题含解析_第2页
2024届福建省晋江市永春县第一中学数学高一第二学期期末复习检测试题含解析_第3页
2024届福建省晋江市永春县第一中学数学高一第二学期期末复习检测试题含解析_第4页
2024届福建省晋江市永春县第一中学数学高一第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省晋江市永春县第一中学数学高一第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.62.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=3.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.4.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向右平移 B.向右平移C.向左平移 D.向左平移5.为三角形ABC的一个内角,若,则这个三角形的形状为()A.锐角三角形 B.钝角三角形C.等腰直角三角形 D.等腰三角形6.已知向量,,则在方向上的投影为()A. B. C. D.7.圆心在(-1,0),半径为的圆的方程为()A. B.C. D.8.角的终边经过点,那么的值为()A. B. C. D.9.等差数列中,,则的值为()A.14 B.17 C.19 D.2110.若,则下列不等式成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)12.已知正三棱柱木块,其中,,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.13.若、分别是方程的两个根,则______.14.计算:__________.15.底面边长为,高为的直三棱柱形容器内放置一气球,使气球充气且尽可能的膨胀(保持球的形状),则气球表面积的最大值为_______.16.设,则等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.18.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为万元,求和;(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元,求和;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?19.某商品监督部门对某厂家生产的产品进行抽查检测估分,监督部门在所有产品中随机抽取了部分产品检测评分,得到如图所示的分数频率分布直方图:(1)根据频率分布直方图,估计该厂家产品检测评分的平均值;(2)该厂决定从评分值超过90的产品中取出5件产品,选择2件参加优质产品评选,若已知5件产品中有3件来自车间,有2件产品来自车间,试求这2件产品中含车间产品的概率.20.已知数列的前项和为,且满足,().(Ⅰ)求的值,并求数列的通项公式;(Ⅱ)设数列的前项和为,求证:().21.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【题目详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【题目点拨】本题主要考查学生的数学抽象和数学建模能力.2、D【解题分析】

由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【题目详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【题目点拨】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.3、D【解题分析】

根据平均数和方差的公式,可推导出,,,的平均数和方差.【题目详解】因为,所以,所以的平均数为;因为,所以,故选:D.【题目点拨】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.4、A【解题分析】

利用函数的图像可得,从而可求出,再利用特殊点求出,进而求出三角函数的解析式,再利用三角函数图像的变换即可求解.【题目详解】由图可知,所以,当时,,由于,解得:,所以,要得到的图像,则需要将的图像向右平移.故选:A【题目点拨】本题考查了由图像求解析式以及三角函数的图像变换,需掌握三角函数图像变换的原则,属于基础题.5、B【解题分析】试题分析:由,两边平方得,即,又,则,所以为第三、四象限角或轴负半轴上的角,所以为钝角.故正确答案为B.考点:1.三角函数的符号、平方关系;2.三角形内角.6、D【解题分析】

直接利用向量的数量积和向量的投影的定义,即可求解,得到答案.【题目详解】由题意,向量,,则在方向上的投影为:.故选D.【题目点拨】本题主要考查了平面向量的数量积的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解题分析】

根据圆心和半径可直接写出圆的标准方程.【题目详解】圆心为(-1,0),半径为,则圆的方程为故选:A【题目点拨】本题考查圆的标准方程的求解,属于简单题.8、C【解题分析】,故选C。9、B【解题分析】

利用等差数列的性质,.【题目详解】,解得:.故选B.【题目点拨】本题考查了等比数列的性质,属于基础题型.10、D【解题分析】

取特殊值检验,利用排除法得答案。【题目详解】因为,则当时,故A错;当时,故B错;当时,,故C错;因为且,所以故选D.【题目点拨】本题考查不等式的基本性质,属于简单题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R,,所以该球形容器的表面积的最小值为.【题目点拨】将表面积最小的球形容器,看成其中两个正四棱柱的外接球,求其半径,进而求体积.12、【解题分析】

将正三棱柱的侧面沿棱展开成平面,连接与的交点即为满足最小时的点,可知点为棱的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【题目详解】将正三棱柱沿棱展开成平面,连接与的交点即为满足最小时的点.由于,,再结合棱柱的性质,可得,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,为的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:.故答案为:.【题目点拨】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.13、【解题分析】

利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【题目详解】由韦达定理得,,因此,.故答案为:.【题目点拨】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.14、0【解题分析】

直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【题目详解】解:,故答案为:0.【题目点拨】本题主要考查数列极限的运算法则,属于基础知识的考查.15、【解题分析】由题意,气球充气且尽可能地膨胀时,气球的半径为底面三角形内切圆的半径

∵底面三角形的边长分别为,∴底面三角形的边长为直角三角形,利用等面积可求得∴气球表面积为4π.16、【解题分析】

首先根据题中求出的周期,然后利用周期性即可求出答案.【题目详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【题目点拨】本题考查了三角函数的周期性,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)-1;(Ⅱ)【解题分析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【题目详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【题目点拨】已知,若,则有;已知,若,则有.18、(1),(2),(3)至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【解题分析】

(1)利用等差数列、等比数列的通项公式求和(2)是数列的前项和,是数列的前项和减去600,利用等差数列和等比数列的前项和公式求出即可(3)作差,利用函数的单调性,即可得出结论【题目详解】(1)由题意得是等差数列,所以由题意得所以所以是首项为250,公比为的等比数列所以所以(2)是数列的前项和所以是数列的前项和减去600,所以(3)易得此函数当时单调递增且时时所以至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【题目点拨】本题考查的是数列的综合知识,包含通项公式的求法、前n项和的求法及数列的单调性.19、(1);(2).【解题分析】

(1)利用平均数=每个小矩形面积小矩形底边中点横坐标之和,即可求解.(2)设这5件产品分别为,其中1,2为车间生产的产品,利用列举法求出基本事件的个数,再利用古典概型的概率公式即可求解.【题目详解】解:(1)依题意,该厂产品检测的平均值.(2)设这5件产品分别为,其中1,2为车间生产的产品,从5人中选出2人,所有的可能的结果有:,,,,,,,,,,共10个,其中含有车间产品的基本事件有:,,,,,,,共7个,所以取出的2件产品中含车间产品的概率为.【题目点拨】本小题主要考查频率分布直方图、平均数、古典概型等基础知识,考查抽象概括能力、数据处理能力、运算求解能力、应用意识,考查统计与概率思想、分类与整合思想等.20、(Ⅰ),,(Ⅱ)见解析【解题分析】

(Ⅰ)根据和项与通项关系得,利用等比数列定义求得结果(Ⅱ)利用放缩法以及等比数列求和公式证得结果【题目详解】(Ⅰ),由得,两式相减得故,又所以数列是以2为首项,公比为2的等比数列,因此,即.(Ⅱ)当时,,所以.当时,故又当时,,.因此对一切成立.【题目点拨】本题主要考查了利用和的关系以及构造法求数列的通项公式,同时考查利用放缩法证明数列不等式,解题难点是如何放缩,意在考查学生的数学建模能力和数学运算能力。2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论