安徽省滁州市第三中学2024届数学高一下期末复习检测模拟试题含解析_第1页
安徽省滁州市第三中学2024届数学高一下期末复习检测模拟试题含解析_第2页
安徽省滁州市第三中学2024届数学高一下期末复习检测模拟试题含解析_第3页
安徽省滁州市第三中学2024届数学高一下期末复习检测模拟试题含解析_第4页
安徽省滁州市第三中学2024届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省滁州市第三中学2024届数学高一下期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°2.如图所示,程序框图算法流程图的输出结果是A. B. C. D.3.已知直线与圆相切,则的值是()A.1 B. C. D.4.已知函数,若关于的不等式的解集为,则A. B.C. D.5.已知,若,则等于()A. B.1 C.2 D.6.数列的通项,其前项之和为,则在平面直角坐标系中,直线在轴上的截距为()A.-10 B.-9 C.10 D.97.经过点,斜率为2的直线在y轴上的截距为()A. B. C.3 D.58.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于()A. B. C. D.9.若,且,恒成立,则实数的取值范围是()A. B.C. D.10.在等差数列中,若,则()A.10 B.15 C.20 D.25二、填空题:本大题共6小题,每小题5分,共30分。11.sin750°=12.,则f(f(2))的值为____________.13.若关于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},则关于x的不等式cx2+bx+a>0的解集是____________.14.________.15.用列举法表示集合__________.16.设为正偶数,,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.各项均不相等的等差数列前项和为,已知,且成等比数列.(1)求数列的通项公式;(2)令,求数列的前项和.18.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.19.(1)已知,且为第三象限角,求的值(2)已知,计算的值.20.已知不等式ax2-3x+6>4的解集为{x|x<1(1)求a,b;(2)解关于x的不等式a21.设等差数列中,.(1)求数列的通项公式;(2)若等比数列满足,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【题目详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【题目点拨】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.2、D【解题分析】

模拟程序图框的运行过程,得出当时,不再运行循环体,直接输出S值.【题目详解】模拟程序图框的运行过程,得S=0,n=2,n<8满足条件,进入循环:S=满足条件,进入循环:进入循环:不满足判断框的条件,进而输出s值,该程序运行后输出的是计算:.故选D.【题目点拨】本题考查了程序框图的应用问题,是基础题目.根据程序框图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.3、D【解题分析】

利用直线与圆相切的条件列方程求解.【题目详解】因为直线与圆相切,所以,,,故选D.【题目点拨】本题考查直线与圆的位置关系,通常利用圆心到直线的距离与圆的半径的大小关系进行判断,考查运算能力,属于基本题.4、B【解题分析】

由题意可得,且,3为方程的两根,运用韦达定理可得,,的关系,可得的解析式,计算,(1),(4),比较可得所求大小关系.【题目详解】关于的不等式的解集为,可得,且,3为方程的两根,可得,,即,,,,可得,(1),(4),可得(4)(1),故选.【题目点拨】本题主要考查二次函数的图象和性质、函数与方程的思想,以及韦达定理的运用。5、A【解题分析】

首先根据⇒(cos﹣3)cos+sin(sin﹣3)=﹣1,并化简得出,再化为Asin()形式即可得结果.【题目详解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化简得,即sin()=,则sin()=故选A.【题目点拨】本题考查了三角函数的化简求值以及向量的数量积的运算,属于基础题.6、B【解题分析】试题分析:因为数列的通项公式为,所以其前项和为,令,所以直线方程为,令,解得,即直线在轴上的截距为,故选B.考点:数列求和及直线方程.7、B【解题分析】

写出直线的点斜式方程,再将点斜式方程化为斜截式方程即可得解.【题目详解】因为直线经过点,且斜率为2,故点斜式方程为:,化简得:,故直线在y轴上的截距为.故选:B.【题目点拨】本题考查直线的方程,解题关键是应熟知直线的五种方程形式,属于基础题,8、D【解题分析】

在三角形中,利用正弦定理求得,然后在三角形中求得.【题目详解】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故选:D【题目点拨】本小题主要考查正弦定理解三角形,考查解直角三角形,属于基础题.9、A【解题分析】

将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【题目详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【题目点拨】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.10、C【解题分析】

设等差数列的公差为,得到,又由,代入即可求解,得到答案.【题目详解】由题意,设等差数列的公差为,则,又由,故选C.【题目点拨】本题主要考查了等差数列的通项公式的应用,其中解答中熟记等差数列的通项公式,准确计算是解答的关键,着重考查了计算与求解能力,属于基础题,.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】试题分析:由三角函数的诱导公式得sin750°=【考点】三角函数的诱导公式【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值化为特殊角的三角函数求值而得解.12、1【解题分析】

先求f(1),再根据f(1)值所在区间求f(f(1)).【题目详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【题目点拨】本题考查分段函数求值,考查对应性以及基本求解能力.13、{x|-1<x<-}【解题分析】

观察两个不等式的系数间的关系,得出其根的关系,再由和的正负可得解.【题目详解】由已知可得:的两个根是和,且将方程两边同时除以,得,所以的两个根是和,且解集是故得解.【题目点拨】本题考查一元二次方程和一元二次不等式间的关系,属于中档题.14、【解题分析】

直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【题目详解】.故答案为:.【题目点拨】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.15、【解题分析】

先将的表示形式求解出来,然后根据范围求出的可取值.【题目详解】因为,所以,又因为,所以,此时或,则可得集合:.【题目点拨】本题考查根据三角函数值求解给定区间中变量的值,难度较易.16、【解题分析】

得出的表达式,然后可计算出的表达式.【题目详解】,,因此,.故答案为:.【题目点拨】本题考查数学归纳法的应用,考查项的变化,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)利用等差数列的通项公式和等比数列的性质,可得,则可得通项公式.(2)根据(1)的结论可得,然后利用裂项相消求和,可得结果.【题目详解】(1)因为各项均不相等,所以公差由等差数列通项公式且,所以,又成等比数列,所以,则,化简得,所以即可得即(2)由(1)可得化简可得由所以【题目点拨】本题主要考查利用裂项相消法求和,属基础题.18、(1);(2)【解题分析】

(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【题目详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【题目点拨】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦定理的基础上,利用基本不等式来求解两边之积的最大值.19、(1);(2)【解题分析】

(1)由,结合为第三象限角,即可得解;(2)由,代入求解即可.【题目详解】(1),∴,又∵是第三象限.∴(2).【题目点拨】本题主要考查了同角三角函数的基本关系,属于基础题.20、(1)a=1,b=2;(2)①当c>2时,解集为{x|2<x<c};②当c<2时,解集为{x|c<x<2};③当c=2时,解集为∅.【解题分析】

(1)根据不等式ax2﹣3x+6>4的解集,利用根与系数的关系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,讨论c的取值,求出对应不等式的解集.【题目详解】(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1,或x>b},所以1和b是方程ax2﹣3x+2=0的两个实数根,且b>1;由根与系数的关系,得1+b=3解得a=1,b=2;(2)所求不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0;①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论