2024届江西省赣州市十四县数学高一第二学期期末预测试题含解析_第1页
2024届江西省赣州市十四县数学高一第二学期期末预测试题含解析_第2页
2024届江西省赣州市十四县数学高一第二学期期末预测试题含解析_第3页
2024届江西省赣州市十四县数学高一第二学期期末预测试题含解析_第4页
2024届江西省赣州市十四县数学高一第二学期期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省赣州市十四县数学高一第二学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列是公差不为零的等差数列,函数是定义在上的单调递增的奇函数,数列的前项和为,对于命题:①若数列为递增数列,则对一切,②若对一切,,则数列为递增数列③若存在,使得,则存在,使得④若存在,使得,则存在,使得其中正确命题的个数为()A.0 B.1 C.2 D.32.对于函数,在使成立的所有常数中,我们把的最大值称为函数的“下确界”.若函数,的“下确界”为,则的取值范围是()A. B. C. D.3.若实数满足不等式组,则的最小值是()A. B.0 C.1 D.24.同时具有性质:①图象的相邻两条对称轴间的距离是;②在上是增函数的一个函数为()A. B. C. D.5.阅读如图所示的程序框图,当输入时,输出的()A.6 B. C.7 D.6.设为等比数列的前n项和,若,则()A.-11 B.-8 C.5 D.117.函数的定义域是().A. B. C. D.8.如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则此几何体的表面积为()A. B. C. D.9.已知等差数列{an}的前n项和为,满足S5=S9,且a1>0,则Sn中最大的是()A. B. C. D.10.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数,满足,,,则_______.12.设数列是等差数列,,,则此数列前20项和等于______.13.向量在边长为1的正方形网格中的位置如图所示,则以向量为邻边的平行四边形的面积是_________.14.有一个底面半径为2,高为2的圆柱,点,分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点或的距离不大于1的概率是________.15.已知实数满足,则的最大值为_______.16.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间上的最大值和最小值,并指出取得最值时的的值.18.已知,,其中.(1)求的值;(2)求的值.19.如图,在四边形中,,,.(1)若,求的面积;(2)若,,求的长.20.已知数列的前项和为.(Ⅰ)当时,求数列的通项公式;(Ⅱ)当时,令,求数列的前项和.21.已知,,且与的夹角为.(1)求在上的投影;(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

利用函数奇偶性和单调性,通过举例和证明逐项分析.【题目详解】①取,,则,故①错;②对一切,,则,又因为是上的单调递增函数,所以,若递减,设,且,且,所以,则,则,与题设矛盾,所以递增,故②正确;③取,则,,令,所以,但是,故③错误;④因为,所以,所以,则,则,则存在,使得,故④正确.故选:C.【题目点拨】本题函数性质与数列的综合,难度较难.分析存在性问题时,如果比较难分析,也可以从反面去举例子说明命题不成立,这也是一种常规思路.2、A【解题分析】

由下确界定义,,的最小值是,由余弦函数性质可得.【题目详解】由题意,的最小值是,又,由,得,,,时,,所以.故选:A.【题目点拨】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.3、A【解题分析】

画出不等式组的可行域,再根据线性规划的方法,结合的图像与的关系判定最小值即可.【题目详解】画出可行域,又求最小值时,故的图形与可行域有交点,且往上方平移到最高点处.易得此时在处取得最值.故选:A【题目点拨】本题主要考查了线性规划与绝对值函数的综合运用,需要根据题意画图,根据函数的图形性质分析.属于中档题.4、C【解题分析】由①得函数的最小正周期是,排除.对于B:,当时,,此时B选项对应函数是减函数,C选项对应函数是增函数,满足②,故选C.5、D【解题分析】

根据程序框图,依次运行程序即可得出输出值.【题目详解】输入时,,,,,,,输出故选:D【题目点拨】此题考查程序框图,关键在于读懂框图,根据结构依次运算,求出输出值,尤其注意判断框中的条件.6、A【解题分析】设数列{an}的公比为q.由8a2+a5=0,得a1q(8+q3)=0.又∵a1q≠0,∴q=-2.∴===-11.故选A.7、C【解题分析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.8、B【解题分析】

作出多面体的直观图,将各面的面积相加可得出该多面积的表面积.【题目详解】由三视图得知该几何体的直观图如下图所示:由直观图可知,底面是边长为的正方形,其面积为;侧面是等腰三角形,且底边长,底边上的高为,其面积为,且;侧面是直角三角形,且为直角,,,其面积为,,的面积为;侧面积为等腰三角形,底边长,,底边上的高为,其面积为.因此,该几何体的表面积为,故选:B.【题目点拨】本题考查几何体的三视图以及几何体表面积的计算,再利用三视图求几何体的表面积时,要将几何体的直观图还原,并判断出各个面的形状,结合图中数据进行计算,考查空间想象能力与计算能力,属于中等题.9、B【解题分析】

由S5=S9可得a7+a8=0,再结合首项即可判断Sn最大值【题目详解】依题意,由S5=S9,a1>0,所以数列{an}为递减数列,且S9-S5=a6+a7+a8+a9=2(a7+a8)=0,即a7+a8=0,所以a7>0,a8<0,所以则Sn中最大的是S7,故选:B.【题目点拨】本题考查等差数列Sn最值的判断,属于基础题10、D【解题分析】

试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【题目详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为.【题目点拨】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.12、180【解题分析】

根据条件解得公差与首项,再代入等差数列求和公式得结果【题目详解】因为,,所以,【题目点拨】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题13、3【解题分析】

将向量平移至相同的起点,写出向量对应的坐标,计算向量的夹角,从而求得面积.【题目详解】根据题意,将两个向量平移至相同的起点,以起点为原点建立坐标系如下所示:则,故.又两向量的夹角为锐角,故,则该平行四边形的面积为.故答案为:3.【题目点拨】本题考查用向量解决几何问题的能力,涉及向量坐标的求解,夹角的求解,属基础题.14、【解题分析】

本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点到点,的距离不大于1的概率;【题目详解】解:由题意可知,点P到点或的距离都不大于1的点组成的集合分别以、为球心,1为半径的两个半球,其体积为,又该圆柱的体积为,则所求概率为.故答案为:【题目点拨】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.15、【解题分析】

根据约束条件,画出可行域,目标函数可以看成是可行域内的点和的连线的斜率,从而找到最大值时的最优解,得到最大值.【题目详解】根据约束条件可以画出可行域,如下图阴影部分所示,目标函数可以看成是可行域内的点和的连线的斜率,因此可得,当在点时,斜率最大联立,得即所以此时斜率为,故答案为.【题目点拨】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.16、2【解题分析】

去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【题目详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【题目点拨】本题考查了方差的计算,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数的解析式为,其振幅是2,初相是(2)时,函数取得最大值0;时,函数取得最小值勤-2【解题分析】

(1)根据图像写出,由周期求出,再由点确定的值.(2)根据的取值范围确定的取值范围,再由的单调求出最值【题目详解】(1)由图象知,函数的最大值为2,最小值为-2,∴,又∵,∴,,∴.∴函数的解析式为.∵函数的图象经过点,∴,∴,又∵,∴.故函数的解析式为,其振幅是2,初相是.(2)∵,∴.于是,当,即时,函数取得最大值0;当,即时,函数取得最小值为-2.【题目点拨】本题考查由图像确定三角函数、给定区间求三角函数的最值,属于基础题.18、(1)(2)【解题分析】

(1)根据题意,由,求解,注意角的范围,可求得值,再根据运用两角和正切公式,即可求解;(2)由题意,配凑组合角,运用两角差余弦公式,即可求解.【题目详解】(1)∵,∴,∵,∴,∴,,(2)∵,∴,,∵,,∴,,∴.【题目点拨】本题考查三角恒等变换中的由弦求切、两角和正切公式、两角差余弦公式,考查配凑组合角,考查计算能力,属于基础题.19、(1);(2).【解题分析】

(1)由余弦定理求出BC,由此能求出△ABC的面积.(2)设∠BAC=θ,AC=x,由正弦定理得从而,在中,由正弦定理得,建立关于θ的方程,由此利用正弦定理能求出sin∠CAD.再利用余弦定理可得结果.【题目详解】(1)因为,,,所以,即,所以.所以.(2)设,,则,在中,由正弦定理得:,所以;在中,,所以.即,化简得:,所以,所以,,所以在中,.即,解得或(舍).【题目点拨】本题考查正、余弦定理在解三角形中的应用,考查了引入角的技巧方法,考查运算求解能力,考查函数与方程思想,是中档题.20、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)利用的方法,进行求解即可(Ⅱ)仍然使用的方法,先求出,然后代入,并化简得,然后利用裂项求和,求出数列的前项和【题目详解】解:(Ⅰ)数列的前项和为①.当时,,当时,②,①﹣②得:,(首相不符合通项),所以:(Ⅱ)当时,①,当时,②,①﹣②得:,所以:令,所以:,则:【题目点拨】本题考查求数列通项的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论