




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省东山县第二中学2024届高一数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知方程表示焦点在y轴上的椭圆,则m的取值范围是()A. B. C. D.2.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.3.不等式的解集是A. B.C.或 D.4.在等差数列中,若,则()A.10 B.15 C.20 D.255.已知函数在时取最大值,在是取最小值,则以下各式:①;②;③可能成立的个数是()A.0 B.1 C.2 D.36.若函数和在区间D上都是增函数,则区间D可以是()A. B. C. D.7.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.8.英国数学家布鲁克泰勒(TaylorBrook,1685~1731)建立了如下正、余弦公式(
)其中,,例如:.试用上述公式估计的近似值为(精确到0.01)A.0.99 B.0.98 C.0.97
D.0.969.直线l:x+y﹣1=0与圆C:x2+y2=1交于两点A、B,则弦AB的长度为()A.2 B. C.1 D.10.在长方体中,,,,则异面直线与所成角的大小为()A. B. C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像可由函数的图像至少向右平移________个单位长度得到.12.已知均为正数,则的最大值为______________.13.设等差数列的前项和为,则______.14.在中,角的对边分别为.若,则的值为__________.15.已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_______.16.在行列式中,元素的代数余子式的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,求的边上的中线所在的直线方程.18.已知在三棱锥S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.19.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.20.如图,在三棱锥中,平面平面,,点,,分别为线段,,的中点,点是线段的中点.求证:(1)平面;(2).21.某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元)1819202122销量(册)6156504845(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
利用椭圆的性质列出不等式求解即可.【题目详解】方程1表示焦点在y轴上的椭圆,可得,解得1<m.则m的取值范围为:(1,).故选B.【题目点拨】本题考查椭圆的方程及简单性质的应用,基本知识的考查.2、A【解题分析】
求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【题目详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【题目点拨】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.3、B【解题分析】试题分析:∵,∴,即,∴不等式的解集为.考点:分式不等式转化为一元二次不等式.4、C【解题分析】
设等差数列的公差为,得到,又由,代入即可求解,得到答案.【题目详解】由题意,设等差数列的公差为,则,又由,故选C.【题目点拨】本题主要考查了等差数列的通项公式的应用,其中解答中熟记等差数列的通项公式,准确计算是解答的关键,着重考查了计算与求解能力,属于基础题,.5、A【解题分析】
由余弦函数性质得,(),解出后,计算,可知三个等式都不可能成立.【题目详解】由题意,(),解得,,,,三个都不可能成立,正确个数为1.故选A.【题目点拨】本题考查余弦函数的图象与性质,解题时要注意对中的整数要用不同的字母表示,否则可能出现遗漏,出现错误.6、D【解题分析】
依次判断每个选项,排除错误选项得到答案.【题目详解】时,单调递减,A错误时,单调递减,B错误时,单调递减,C错误时,函数和都是增函数,D正确故答案选D【题目点拨】本题考查了三角函数的单调性,意在考查学生对于三角函数性质的理解应用,也可以通过图像得到答案.7、B【解题分析】
先根据斜二测画法的性质求出原图形,再分析绕AB所在直线旋转一周后形成的几何体的表面积即可.【题目详解】根据斜二测画法的性质可知,原是以为底,高为的等腰三角形.又.故为边长为2的正三角形.则绕AB所在直线旋转一周后形成的几何体可看做两个以底面半径为,高为的圆锥组合而成.故表面积为.故选:B【题目点拨】本题主要考查了斜二测画法还原几何图形与旋转体的侧面积求解.需要根据题意判断出旋转后的几何体形状再用公式求解.属于中档题.8、B【解题分析】
利用题设中给出的公式进行化简,即可估算,得到答案.【题目详解】由题设中的余弦公式得,故答案为B【题目点拨】本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解题分析】
利用直线和圆相交所得弦长公式,计算出弦长.【题目详解】圆的圆心为,半径为,圆心到直线的距离为,所以.故选:B【题目点拨】本小题主要考查直线和圆相交所得弦长的计算,属于基础题.10、C【解题分析】
平移CD到AB,则即为异面直线与所成的角,在直角三角形中即可求解.【题目详解】连接AC1,CD//AB,可知即为异面直线与所成的角,在中,,故选.【题目点拨】本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到.【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.12、【解题分析】
根据分子和分母的特点把变形为,运用重要不等式,可以求出的最大值.【题目详解】(当且仅当且时取等号),(当且仅当且时取等号),因此的最大值为.【题目点拨】本题考查了重要不等式,把变形为是解题的关键.13、【解题分析】
设等差数列的公差为,由,可求出的值,结合,可以求出的值,利用等差数列的通项公式,可得,再利用,可以求出的值.【题目详解】设等差数列的公差为,因为,所以,又因为,所以,而.【题目点拨】本题考查了等差数列的通项公式以及等差数列的前项和公式,考查了数学运算能力.14、1009【解题分析】
利用余弦定理化简所给等式,再利用正弦定理将边化的关系为角的关系,变形化简即可得出目标比值.【题目详解】由得,即,所以,故.【题目点拨】本题综合考查正余弦定理解三角形,属于中档题.15、【解题分析】
利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【题目详解】当时,符合,当时,符合,【题目点拨】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。16、【解题分析】
根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【题目详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【题目点拨】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
设边的中点,则由中点公式可得:,即点坐标为所以边上的中线先的斜率则由直线的斜截式方程可得:这就是所求的边上的中线所在的直线方程.18、证明见解析【解题分析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【题目详解】证明:因为SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC内的两相交线,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC内两相交线,所以AD⊥面SBC.【题目点拨】本题考查了线面垂直的证明与性质,属于基础题.19、(1)3;(2)1.【解题分析】
(1),.用余弦定理,即可求出;(2)设,,用正弦定理求出,,展开,结合辅助角公式可化为,由的取值范围,即可求解.【题目详解】(1)在中,由余弦定理得,,所以线段的长度为3千米.(2)设,因为,所以,在中,由正弦定理得,.所以,,因此,因为,所以.所以当,即时,取到最大值1.答:两条观光线路距离之和的最大值为1千米.【题目点拨】本题考查正、余弦定理解三角形,考查三角恒等变换,尤其是辅助角公式要熟练应用,属于中档题.20、(1)见解析;(2)见解析【解题分析】
(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.【题目详解】(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:2,又因为O为线段AC的中点,G是线段CO的中点,所以2,于是,所以FG∥QO,因为FG⊄平面EBO,QO⊂平面EBO,所以FG∥平面EBO.(2)因为O为边AC的中点,AB=BC,所以BO⊥AC,因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,所以BO⊥平面PAC,因为PA⊂平面PAC,所以BO⊥PA,因为点E,O分别为线段PA,AC的中点,所以EO∥PC,因为PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO⊂平面EBO,所以PA⊥平面EBO,因为BE⊂平面EBO,所以PA⊥BE.【题目点拨】本题考查线面垂直、线面平行的证明,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建生物工程职业技术学院《传播伦理与法规》2023-2024学年第二学期期末试卷
- 甘肃财贸职业学院《Python程序设计实验》2023-2024学年第二学期期末试卷
- 云南医药健康职业学院《组织战略与行为学》2023-2024学年第二学期期末试卷
- 山西医科大学晋祠学院《电路分析基础实验》2023-2024学年第二学期期末试卷
- 北海康养职业学院《舞台表演基础》2023-2024学年第二学期期末试卷
- 2024年汽车座套项目资金需求报告代可行性研究报告
- 糖尿病饮食健康教育
- 2025年贵州六枝经济开发区溢鑫投资开发有限公司招聘笔试参考题库含答案解析
- 2025年云南玉溪市市政开发建设有限公司招聘笔试参考题库附带答案详解
- 2025年安徽省六安东城经济建设有限公司招聘笔试参考题库附带答案详解
- 山东省2024年中考生物试卷七套合卷【附答案】
- 医学影像检查技术学智慧树知到答案2024年浙江中医药大学
- 2024年福建厦门市海沧区市场监督管理局招聘食品药品协管员18人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 《一元二次方程》复习2省公开课获奖课件说课比赛一等奖课件
- 国开(天津)基层安全与教育策划与实施形考1-2试题及答案
- 2024年下半年教师资格考试初中思想品德面试试题及解答
- 【《长虹美菱基于EVA的业绩评价的案例分析》9800字】
- 2024年03月安徽合肥市第二人民医院招考聘用工作人员79人笔试近年2018-2023典型考题及考点剖析附答案带详解
- 康复医学康复治疗技术含内容模板
- 【N600MW发电机组改供热探析17000字(论文)】
- 【应收账款管理问题及完善策略:以S建工集团公司为例9800字(论文)】
评论
0/150
提交评论