版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届商洛市重点中学数学高一下期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图所示的程序框图,输出的s值为A. B.C. D.2.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()A. B. C. D.3.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或4.如果直线l过点(2,1),且在y轴上的截距的取值范围为(﹣1,2),那么l的斜率k的取值范围是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)5.函数,,若对任意,存在,使得成立,则实数m的取值范围是()A. B. C. D.6.已知函数相邻两个零点之间的距离为,将的图象向右平移个单位长度,所得的函数图象关于轴对称,则的一个值可能是()A. B. C. D.7.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10108.在边长为1的正方体中,,,分别是棱,,的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.1 B. C. D.9.函数的图象沿轴向左平移个单位长度后得到函数的图象的一个对称中心是()A. B. C. D.10.函数,,的部分图象如图所示,则函数表达式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设的内角,,所对的边分别为,,.已知,,如果解此三角形有且只有两个解,则的取值范围是_____.12.已知向量(1,x2),(﹣2,y2﹣2),若向量,共线,则xy的最大值为_____.13.若正四棱锥的底面边长为,侧棱长为,则该正四棱锥的体积为______.14.已知两点,则线段的垂直平分线的方程为_________.15.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.16.在中角所对的边分别为,若则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.遇龙塔建于明代万历年间,简体砖石结构,屹立于永州市城北潇水东岸,为湖南省重点文物保护单位之一.游客乘船进行观光,到达潇水河河面的处时测得塔顶在北偏东45°的方向上,然后向正北方向行驶后到达处,测得此塔顶在南偏东的方向上,仰角为,且,若塔底与河面在同一水平面上,求此塔的高度.18.已知数列前n项和,点在函数的图象上.(1)求的通项公式;(2)设数列的前n项和为,不等式对任意的正整数恒成立,求实数a的取值范围.19.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.20.在中,角,,的对边分别为,,,已知向量,,且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.21.已知函数.(1)求的单调递增区间;(2)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.2、B【解题分析】,,.选B.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.3、D【解题分析】
利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【题目详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【题目点拨】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.4、A【解题分析】
利用直线的斜率公式,求出当直线经过点时,直线经过点时的斜率,即可得到结论.【题目详解】设要求直线的斜率为,当直线经过点时,斜率为,当直线经过点时,斜率为,故所求直线的斜率为.故选:A.【题目点拨】本题主要考查直线的斜率公式,属于基础题.5、D【解题分析】,当时,对于∵对任意,存在,使得成立,,解得实数的取值范围是.
故选D.【题目点拨】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,6、D【解题分析】
先求周期,从而求得,再由图象变换求得.【题目详解】函数相邻两个零点之间的距离为,则周期为,∴,,图象向右平移个单位得,此函数图象关于轴对称,即为偶函数,∴,,.时,.故选D.【题目点拨】本题考查函数的图象与性质.考查图象平衡变换.在由图象确定函数解析式时,可由最大值和最小值确定,由“五点法”确定周期,从而确定,再由特殊值确定.7、D【解题分析】
由等差数列{an}中,S1=1,S【题目详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【题目点拨】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.8、D【解题分析】
根据直线与平面没有公共点可知平面.将截面补全后,可确定点的位置,进而求得三角形面积的最小值.【题目详解】由题意,,分别是棱,,的中点,补全截面为,如下图所示:因为直线与平面没有公共点所以平面,即平面,平面平面此时位于底面对角线上,且当与底面中心重合时,取得最小值此时三角形的面积最小故选:D【题目点拨】本题考查了直线与平面平行、平面与平面平行的性质与应用,过定点截面的作法,属于难题.9、B【解题分析】
先求出变换后的函数的解析式,求出所得函数的对称中心坐标,可得出正确选项.【题目详解】函数的图象沿轴向左平移个单位长度后得到函数的解析式为,令,得,因此,所得函数的图象的一个对称中心是,故选B.【题目点拨】本题考查图象的变换以及三角函数的对称中心,解题的关键就是求出变换后的三角函数解析式,考查分析问题和解决问题的能力,属于中等题.10、A【解题分析】
根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【题目详解】由图像知,,,解得,因为函数过点,所以,,即,解得,因为,所以,.故选:A【题目点拨】本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由余弦定理写出c与x的等式,再由有两个正解,解出x的取值范围【题目详解】根据余弦定理:代入数据并整理有,有且仅有两个解,记为则:【题目点拨】本题主要考查余弦定理以及韦达定理,属于中档题.12、【解题分析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算,可得,再利用基本不等式,求得的最大值.【题目详解】向量,,若向量,共线,则,,即,当且仅当,时,取等号.故的最大值为,故答案为:.【题目点拨】本题主要考查两个向量共线的性质,考查两个向量坐标形式的运算和基本不等式,属于基础题.13、4.【解题分析】
设正四棱锥的高为PO,连结AO,在直角三角形POA中,求得高,利用体积公式,即可求解.【题目详解】由题意,如图所示,正四棱锥P-ABCD中,AB=,PA=设正四棱锥的高为PO,连结AO,则AO=,在直角三角形POA中,,∴.【题目点拨】本题主要考查了正棱锥体积的计算,其中解答中熟记正棱锥的性质,以及棱锥的体积公式,准确计算是解答的关键,着重考查了推理与运算能力.14、【解题分析】
求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程.【题目详解】线段的中点坐标为,直线的斜率为,所以,线段的垂直平分线的斜率为,其方程为,即.故答案为.【题目点拨】本题考查线段垂直平分线方程的求解,有如下两种方法求解:(1)求出中垂线的斜率和线段的中点,利用点斜式得出中垂线所在直线方程;(2)设动点坐标为,利用动点到线段两端点的距离相等列式求出动点的轨迹方程,即可作为中垂线所在直线的方程.15、【解题分析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)16、【解题分析】,;由正弦定理,得,解得.考点:正弦定理.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
根据正弦定理求得,然后在直角三角形中求得,即可得到答案.【题目详解】由题意,在中,,故又,故由正弦定理得:,解得,因为,所以,所以.【题目点拨】本题主要考查了解三角形的实际应用问题,其中解答中熟练应用正弦定理和直角三角形的性质是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1);(2).【解题分析】试题分析:(1)将点的坐标代入函数的方程得到.利用,可求得数列的通项公式为.(2)利用裂项求和法求得.为递增的数列,当时有最小值为,所以,解得.试题解析:(1)点在函数的图象上,.①当时,,②①-②得.当时,,符合上式..(2)由(1)得,.,数列单调递增,中的最小项为.要使不等式对任意正整数恒成立,只要,即.解得,即实数的取值范围为.点睛:本题主要考查函数与数列,考查已知数列前项和,求数列通项的方法,即用公式.要注意验证当时等号是否成立.考查了裂项求和法,当数列通项是分数的形式,并且分母是两个等差数列的乘积的时候,可考虑用裂项求和法求和.还考查了数列的单调性和恒成立问题的解法.19、(1)证明见解析;(2).【解题分析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【题目详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【题目点拨】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.20、(1);(2)【解题分析】
(1)根据和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函数的图像和性质求解.【题目详解】(1)因为,所以,由正弦定理化角为边可得,即,由余弦定理可得,又,所以.(2)由(1)可得,设的外接圆的半径为,因为,,所以,则,因为为锐角三角形,所以,即,所以,所以,所以,故的取值范围为.【题目点拨】(1)本题主要考查正弦定理余弦定理解三角形,考查三角函数的图像和性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购谈判与合同管理规范(标准版)
- 会议发言与讨论规范制度
- 公共交通线路规划管理制度
- 国际贸易融资与风险管理指南(标准版)
- 车站客运服务监督制度
- 办公室员工薪酬福利制度
- 《JavaScript前端开发技术》试卷及答案 卷2
- 2026年西安高新第三中学公寓楼招聘备考题库及答案详解1套
- 养老院消防通道及疏散预案制度
- 养老院入住老人社会活动参与制度
- 广东省广州市2025-2026学年九年级化学上学期期末模拟卷(含答案)
- 湖北省十堰市第二中学高中生物必修一人教版导能量之源光光合作用教案
- 集团有限公司安全生产责任清单(全员)
- 重庆市(康德卷)2025-2026学年高三上学期高考模拟调研(二)(12月)数学试题+答案
- 2021合益胜任力素质等级词典
- 股权转让并代持协议书
- 2024年全国职业院校技能大赛ZZ054 智慧物流作业赛项规程以及智慧物流作业赛项赛题1-10套
- 优化你的网页布局以提高网站的可用性
- 门头和广告装修合同范本
- GB/T 32891.2-2019旋转电机效率分级(IE代码)第2部分:变速交流电动机
- GB/T 32147-2015家用电磁炉适用锅
评论
0/150
提交评论