小学数学复习备考方案汇总_第1页
小学数学复习备考方案汇总_第2页
小学数学复习备考方案汇总_第3页
小学数学复习备考方案汇总_第4页
小学数学复习备考方案汇总_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

让数学复习课堂具有生命活力

------小学数学毕业班复习备考

更庆县第一完小小学眈树清

课堂是教师职业幸福的生命,数学与生活息息相关。作为数学

教师,要学会做学生生命中的贵人,数学教学应该是生动的、寓于

思维碰撞的心灵交流,通过建立信任、安全、民主、平等、有序的

数学学习环境,沉淀到学生生命里的是数学思维和数学方法,达成

人课合一、浑然一体,这是目标、是要求、更是境界;要实践、要

思考、更要创新。

古语说得好:温故而知新,可以为师矣。意思是说,在温习

旧知识时,能有新体会、新发现、就可以当老师了。这里强调的就

是复习对于学习的重要作用。某种意义上说,复习比学习更重要。

小学数学期末总复习,是学生对本学期数学学习的一个系统的整

理,是对本学期数学知识的一个重构,更是一种提升。此阶段复习

效率的高低关系到本学期教学任务是否能圆满完成,影响到小学生

今后在数学方面的发展。因此,做好小学数学期末复习,提高复习

效率尤其显得重要。今天,我重点从小学数学复习课的定义、小学

数学毕业总复习的任务、认清总复习的教学目标、掌握小学数学复

习的方法及措施、小学数学复习应注意的问题和把握知识点进行有

针对性地复习这六大方面来谈一谈。

一、小学数学复习课的定义

数学是一门研究数量关系和空间形式的科学。关于数学课的复

习,我们先来重新认识复习课的定义:复习课是以复习巩固所学知

识为主要内容,并借助板书形成知识网络的课型。复习课的任务:

加深学生对知识的理解并系统化。复习课的结构:揭题一一回忆

——整理一一沟通一一练习一一总结。揭题一一复习课一般直接揭

示课题,有时还同时列出复习目标。回忆一一由学生对所复习的内

容进行回顾,学生可翻阅课本、相互提示。通常教师只是辅以提问

或学生做基本的练习。整理一一分与合,即按一定的标准进行分类

与合并,使知识条理化、系统化。这种既求同又求异的环节通常与

板书结合起来,形成线状、块状、网状、表格等形式的板书。沟通

——进行纵向联系和横向联系,构成网络,形成知识结构,并通过

深化练习使之转化为学生的认知结构。练习一一主要是

综合练习,通过练习提高学生综合运用知识的能力,另外设计一至

两题创造性练习。总结一一总结各知识间的相互关系,进一步明晰

和完善学生的认知结构,通常借助板书完成全课总结。

同时还要注意复习课与练习课的区别,不要把复习课上成练习

课:1、内容上的区别。练习课较单一,通常在某个知识点或某小

节之后,复习课较综合,通常在某个知识板块或某单元之后。2、

任务上的区别。练习课重在形成技能技巧,复习课重在建立认知结

构。练习课是以练为主把各个知识点串联成“线”,复习课通过梳

理沟通把各个知识点组装成“面”及“体”。3、结构上的区别。

练习课的层次是:会一一熟一一巧一一创,复习课的层次是:忆一

一理一一通一一创。(创是指创新能力)4、练习设计上的区别。

练习课的练习设计侧重于层次性、技巧性,复习课的练习设计侧重

于典型性、普遍性、综合性。

二、小学数学毕业总复习的任务

从小学毕业总复习在整个小学数学教学过程中所处的地位来

看,它的任务概括为以下几点:

1、系统地整理知识。实践表明,学生对数学知识的掌握在很大

程度上取决于复习中的系统整理,而小学毕业复习是对小学阶段所

学知识形成一种网络结构。

2、全面巩固所学知识。毕业复习的本身是一种重新学习的过

程,是对所学知识从掌握水平达到熟练掌握水平。

3、查漏补缺。结合我校小学实际,大多采取小循环教学,学生

在知识的理解和掌握程度上不可避免地存在某些问题。所以,毕业

复习的再学习过程要弥补知识上掌握的缺陷。

4、进一步提高能力。进一步提高学生的计算、初步的逻辑思

维、空间观念和解决实际问题的能力。让学生在复习中应充分体现

从“学会”到“会学”的转化。

三、认清总复习的教学目标

1、使学生比较系统地牢固地掌握有关整数、小数、分数、比和

比例、简易方程等基础知识,具有进行整数、小数、分数四则运算

的能力,会使用学过的简便算法,合理、灵活地进行计算,会解简

易方程,养成检查和验算的习惯。

2、使学生巩固已获得的一些计量单位的大小的表象,牢固地掌

握所学的单位间的进率,能够比较熟练地进行名数的简单改写。

3、使学生牢固地掌握所学的几何形体的特征,能够比较熟练地

计算一些几何形体的周长、面积和体积,巩固所学的简单的画图、

测量等技能。

4、使学生掌握所学的统计初步知识,能够看和绘制简单的统计

图表,并且能够计算求平均数问题。

5、使学生牢固地掌握所学的一些常见的数量关系和应用题的解

答方法,能够比较灵活地运用所学知识独立地解答不复杂的应用题

和生活中一些简单的实际问题。

四、掌握小学数学复习的方法及措施

各学校、各年级结合实际制定切实可行的复习计划,并认真执

行计划。为使复习具有针对性,目的性和可行性,找准重点、难

点,大纲(课程标准)是复习依据,教材是复习的蓝本。复习时要弄

清学习中的难点、疑点及各知识点易出错的原因,这样做到复习有

针对性,有实效性。

(一)复习目标的定位:

1、学生定位:抓中间,促两头。引导学生熟练掌握小学阶段所

学基础知识和基本技能,提高学生应用所学知识解决问题的能力。

2、复习内容的定位:以基础知识、基本技能的掌握为重点,适

当进行拓展性练习(题目难度稍大的问题)和综合性练习(需要运用

学过的多个知识解决的问题)。帮助学生整理、归纳所学知识,理清

知识的来龙去脉,做到“连成线、结成网”,使学生能全面、系统

地理解、掌握相关知识。

3、复习方式的定位:以练带讲,当面反馈、矫正。对学生的知

识掌握情况进行查漏补缺。同时进行复习方法指导,培养学生自主

复习的能力。

(二)复习的策略:

1、精选习题策略:围绕复习的主题,教师一定通览教材,把其

中经典的题目圈画出来单独呈现,让学生再次练习;围绕平时单元

测试中,学生出错率高的题目,单独摘抄出来,供学生反复训练;

教师自己编写或者从资料中查找综合性强的典型题目,作有益的补

充。

2、优先提问策略:多给中差生回答问题或到黑板做题的机会,

这样便于发现中差生的知识缺陷,教师有的放矢的进行讲解,同

时,也能调动中差生参与课堂的积极性。对于难度较大或者中差生

解决不了的问题,则让优生出面。

3、精讲多练的策略:构建单元或者主题的知识网络体系时,小学生

做起来比较困难,且比较耗时,所以可以由教师完成,但要讲解,

使学生理解整个知识体系。找规律的问题,学生往往表意不清,这

需要教师来规范学生的语言,甚至是让学生记住教师的语言。总

之,教师要么不讲,要讲就必须讲明白。多练,但要突出层次。一

般的练习设计都遵循:先基础再拔高,由浅入深的规律。在练习

中,题目过易、过难都起不到复习的效果。重练习,提高学生练习

的兴趣与效果,切忌不加选择的拿来主义,反对题海战术。应把复

习的重点放在教材上,对教材中的练习做到人人过关。教辅上的习

题可作参考,星号题应视其难度,针对不同学生区别对待,不要求

人人皆会。选择参考其他练习,一定要先审视,后选择,再设计,

最后布置给学生,其量不宜多,其难度不宜过大,提倡层次练习、

实施阶梯训练,以满足不同学生的学习需求。关于练习应该做到:

有布必收,有收必改,有改必评,有错必纠。切忌烂布置,不批

改,杜绝不评、不纠的无效行为,要养成检查的习惯。

4、减少失误、培养检查习惯策略。复习时如能注意检查的重要

性,效果也会事半功倍。根据同学们平时易出现的情况,建议大家

从这些地方检查:(1)检查列式是否正确。读题,看是否该用加法、

减法、乘法或是除法来算。(2)列式正确后,看算式中的数字是否

抄错,是否和题中给我们的一样。(3)用估算的方法检查得数。(4)

精确地再算一遍,以得到正确的结果。注意一定要笔算,五年级

后,小数计算用口算很容易错,而且要规范使用草稿本,不要以为

是草稿本就可以乱写乱画!往往一些数由于书写不规范,抄答案都

抄错!(5)检查单位和答有没有填写齐全。(6)操作题,要用铅笔,

尺、三角板画图,切不可信手乱画,画完后记得标明条件(如:直角

符号、长3厘米、宽2厘米等),是否和题目要求一致。(7)解方

程题,要记得写“解”,应用题还要先“设”,这些,同学们老忘

记被扣分,要引起重视了!这里强调正确、规范的使用草稿本。

5、类化跟进策略:围绕难点问题复习时,不要解决一个问题便

草草收兵,这样学生的认识不会太深入。最好,教师随机补充相同

类型或者稍作变化的题目,供学生再练习,这样便能巩固成果,深

化认识。

6、问题解决多元化策略:这里主要是说的“一题多解”,教师

应鼓励学生运用学过的多种方法解决问题,但要注意寻求最优化的

方法,向学生倡导这种方法。

7、独立解决问题策略:注意鼓励学生独立审题,独立解题,不

要再通过“教师读题”“讨论”,”教师刻意引导”等方式来解决问

题,以免养成学生过于依赖,不能自立的“软骨病”。特别是低年

级尤其注意。

8、及时检测策略:复习效果怎样,考试是有效的手段,但要及

时的对学生考试中的问题进行反馈和矫正,教师也要根据考试情况

及时的调整自己的复习计划和复习方法等。

(三)小学数学复习课的一般模式:知识梳理一查漏补缺一练习

提升

1、知识梳理:“理”一一理清楚,构建完整的知识系统。即:

引导学生对所学分散的知识进行系统的整理、归纳,并将那些有内

在联系的知识点在比较、分析的基础上“串”在一起,使之“竖成

线”“横成片”,使知识点条理清楚,使知识形成系统化、结构

化、以加深对知识的理解及知识之间内在联系的把握。做到“学一

点懂一片,学一片懂一面。”方法与策略:(1)回顾所学知识,搜

集知识点。主要是让学生通过阅读数学课本,回顾所学知识,总结

一个单元或章节的知识点,并找出易错易混的关键点,这是梳理知

识的重要前提和基础。(2)寻找规律,总结方法,提高学生学习能

力。在知识整理中,要突出数学思想方法的渗透与提炼,引导学生

对知识进行提炼和概括,使学生发现、领悟一些数学思想和方法。

同时,要引导学生寻找解题规律,总结解题方法,掌握解题策略。

(3)注意知识结构的完整性。无论是“知识点”还是“方法与策

略”的梳理,在建立知识联系的基础上,都要让学生体验到知识结

构的完整性,并尝试让学生运用自己的思路进行知识的重组与整

合。

2、查漏补缺:“查”一查清楚知识遗漏,“补”齐全知识与技

能、过程与方法的缺失,达到课程标准要求。“查漏补缺”是复习

课教学重要目标。为完成这一目标,主要做好以下三个层面工作:

(1)收集错题。复习时,教师要注重课前收集学生平时作业和单检

中的错题,要肯花时间让学生参与找错、议错、辩错的全过程,鼓

励学生“打破砂锅问到底",把错误转化为资源,以此作为学生知

识体系的生长点,往往会收到意外的教学效果。(2)提炼错因。在

广泛收集错例的基础上,对错因要进行科学提炼。只有真正找到错

误的原因,错题的价值才能得以发挥,教师才能在“查漏补缺”中

做到有的放矢,让错误真正成为有用的教学资源。但特别注意的是

要让学生自主纠错,让学生在自己纠错体验中,提炼错误原因。(3)

强化训练。在收集错题、提炼错因的基础上,针对易错题有重点的

进行变式训练,巩固纠错效果。

3、练习提升:练习是巩固知识的手段,提升学习效果是目的。

首先练习的关键在于设计与精选习题,选择习题要围绕教学重点,

要结合学生实际,注重平时学习薄弱环节,在练习设计中应尽量减少

单纯模仿、重复操练的机械内容,。其次要重视练习的层次性,要

兼顾不同层次水平的学生,练习要按照由易到难、由简到繁、由浅

入深的规律逐步加大难度。一般采取以下三种层次进行训练:(1)

基本练习。基本练习要以加深理解和强化基础知识为主,要在

“点”上突破,即突破重、难点,掌握知识点,抓准关键点。意在

夯实基础,掌握数学基本技能。(2)综合性练习。综合练习应以形

成技能、培养能力为主,主要目的是让学生能综合运用所学的知识

灵活解决问题。意在培养学生分析问题和解决问题的能力。综合练

习的习题的内容要有趣味性、思考性,形成讲求多样性和灵活性,

练习要讲究技巧,要有针对性,对于那些易混淆的内容,要引导学

生加以辨析,一般常用综合练习方式有:对比性练习、发现式练

习、变式性练习、反馈性练习等。综合练习习题设计要在“精”和

“趣”字上下功夫,切忌重复、大量的“题海战术”。(3)拓展性

练习。拓展性练习应结合生活实际设计具有开放性、挑战性的问题

发展学生思维,主要目的是培养学生结合具体情境合理解决问题的

品质。拓展性练习,要在“展”上延伸,在练习中,让学生综合的

运用已学的知识,解决带有一定思考力度的题目,来满足学有余力

的学生的求知欲望,激发探索精神,拓宽学生思路。一般拓展性练

习有:一题多变练习、开放性练习等方式。

以上这三种练习不一定每节课都设计,要遵循面向全体因材施教的

原则,即要关注学困生和中等生,同时又要关注优秀生。让学困生

吃饱,让优生吃好,使不同次的学生得到不同的发展。

(四)复习措施:

1、在复习分块章节中,重视基础知识的复习,加强知识之间的

联系。使学生在理解上进行记忆。比如:基础概念、法则、性质、

公式这类。在课堂上在系统复习中纠正学生的错误,同时防止学生

机械地背诵;但是对于计量单位要求学生在记忆时,比较相对的单

位,理顺关系。

2、在复习基础知识的同时,紧抓学生的能力。(1)四则混合运

算计算方面,重地在整数、小数、分数的四则混合运算,既要提高

学生计算的正确率,又要培养学生善于利用简便方法计算。利用自

习与课后辅导时间对学生进行多次的过关练习;(2)在量的计量和

几何初步知识上,多利用实物的直观性培养学生的空间想象能力,

利用习题类型的衍射性指导学生学习;(3)应用题中着重训练学生

的审题,分析数量关系,寻求合理的简便的方法,练讲结合,归纳

总结,抓订正抓落实;(4)其它的在复习过程中穿插进行,以学生

的不同情况作出具体要求。

3、在复习过程中注意启发,加强导优辅差。对学习能力较差,

基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”利用课

间与课后时间,按最低的要求进行辅导。而对于能力较强,程度较

好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮

助。

4、在复习期间,引导学生主动自觉的复习,学习系统化的归纳

和整理,对学生多采用鼓励的方法,调动学习的积极性。

5、在复习当中,对学生的掌握情况要及时做到心中有数,认真

地与学生进行反馈交流。以期达到复习目标。

五、小学数学复习应注意的问题

(―)要注重把握要点,切记面面俱到。

(二)要充分了解学生,把握学生基础,有针对性的进行复习。

(三)要加强对数学概念的理解、区分和辨析。

(四)要注重学法指导,让学生熟练掌握数学基本方法和技能。

1、培养学生良好的计算习惯,提高计算速度和正确率。(1)养

成良好的计算习惯。(一看,二想,三细算)

(2)强化口算和估算训练。

(3)掌握简算的基本依据。(运算定律和运算性质)

(4)养成验算习惯。

2、掌握解决问题的策略,提高解决问题的能力。

(1)掌握基本的数量关系。

(2)掌握分析问题的思路和方法。(两种思路:综合法和分析法。

四种方法:(列表、假设、画示意图、画线段图)

(3)掌握解决问题的一般步骤。

(4)掌握解决问题的基本思路。

(五)要精心设计习题,应遵循以下原则:

1、科学性原则。(符合学生思维特点和认知发展规律)2、层

次性原则。(由易到难、由简到繁、由浅到深)

3、开放性原则。(开放练习内容、练习环境、练习形式)

4、灵活性原则。(有利于促进学生积极思考,调动学生智力活

动)

5、多样性原则。(题型多样化、方式多样化)

6、针对性原则。(针对学生常出错或预测学生会出错设计习题)

7、对比性原则。(针对学生新旧知识容易混淆和互相干扰设计

习题)

8、趣味性原则。(习题设计要求新、求活、求用,避免枯燥乏

味)

(六)要注重练习的反馈作用,及时了解教情和学情,做到有错必

纠,有疑必解。针对在练习中的错误做补充练习。

六、把握知识点进行有针对性地复习

小学数学课的复习主要从数与代数、空间与图形、统计与概率

和数学思考四部分进行。

第一部分:数与代数

(一)数与代数知识脉络

四则运算的意义

数的意义四则运算的计算方法

计数单位与数位四则运算中各部分之间的关

长度、面积、体积系

单位及其进率四则运算的估算方法

质量单位及其进率0与1在四则运算中的特性

时间单位及其进率四则运算定律、运算性质》

名数之间的改写四则混合运算的顺序

解决问题\

学阶段所学数内可

与攵的有关概念。卜

看,包括整数、小数、人

用字母表示数"即数的意义、数的读法和写法、数的大

式与方程

等式与简易方程f1

瞋的性质、数

数代材设计的一系列作为整数和复习提示的问

题,涵盖了前四方面的攵的改写,包括多位数改写成用万或亿作单

比和比例的联系与区别

位的数,以及小数、分1勺互化,则安排比和分数、除法的联系

求比值和化简比

产k由J

第二段数K小数、分普正比例和反比例:算

常见的量

比和比例<比和比例的应用

的意义、计算方法、运要心中久只7fcM

第三段式与方程,着重复习用字母表示数、简单的方程及其应用。

第四段常见的量,着重复习小学阶段所学的量。包括长度、面积、容积、

质量、时间等计量单位的进率,以及同一种量不同单位的改写。

第五段比和比例,着重复习比和比例的基本知识及其应用,以及正反比例

的概念。

这些内容的内在联系在于数与运算是最基础的数学知识,量与计量是数与

运算的应用。式与方程、比和比例是数与运算进一步的抽象与发展。

一、数的意义及分类

知识点:

(一)数的意义:1、整数的意义整数的个数是无限的。没有最小的整数,

也没有最大的整数。自然数是整数的一部分。

2、自然数的意义:最小的自然数是0,没有最大的自然数;自然数的基本单

位是1。

3、正数和负数的意义。主要识记0既不是正数也不是负数。

4、小数的意义:(1)弄清小数的计数单位是0.1,0.01,0.001,…它是十进

制分数的另一种表现形式。

(2)小数的分类:纯小数和带小数:纯小数<1;带小数>1;

有限小数和无限小数、循环小数、循环节、纯循环小数和混循环小数。

2

如:在对数进行分类时,往往出现一5,8,一],0,0.56,4008,85,

—35,i-0.75,这些数中整数有(),分数有

2

(),小数有(),自然数有

();或4.62525……是()循环小数,可以简写

为()。

5、分数的意义:(1)分数单位:把单位“1”平均分成若干份,表示这样的

一份的数就是这个分数的分数单位。例如3的分数单位是L分数单位是1的

558

最大真分数是(),它至少再添上()个这样的分数单位就是最小

的假分数;在:中,当@为()时,£可以表示自然数的单位,当a为

()时,?可以表示真分数,,当2()时,:可以表示假分数;

把3米长的绳子平均分成5段,每段占全长的(),每段长()米

(2)分数的分类。真分数:真分数小于1;假分数:假分数大于或等于1;

带分数:带分数实际上就是大于1的假分数的另一种表示形式。(真分数V

1;假分数21;带分数>1)

6、百分数的意义:百分数的计数单位是1%,百分数不能带计量单位。如:

50%米(X)

(二)计数单位和数位。

典型题:

(1)由7个1,8个0.1,5个0.01组成的小数是(),这个小数的

计数单位是(),它含有()个这样的计数单位。

(2)个、十、百、千…这些统称为数位。()

二、数的读法、写法及大小比较

知识点:

(一)数的读法和写法。

1、整数的读法和写法。每一级末尾的0都不读,其他位数连续有几个0,都只

读一个零。读数前通常先把这个数分级,再按各数级来读。

2、小数的读法和写法。

3、分数的读法和写法。

4、百分数的读法和写法。

5、正负数的读法和写法。

(二)、数的改写。

1、把多位数改写成以“万”或“亿”为单位的数。

(1)直接改写。

(2)省略位数改写成近似数。

5^13亿(四舍五入到亿位)

2、求小数的近似数。

例如:4.9537弋5.0(保留一位小数)

4.9537=995(保留两位小数)

3、假分数与带分数、整数之间的互化。

4、分数、小数与百分数之间的互化。

改写成分母是10.100,1000.......的分数,再约分一

分子除以分母分数

5、判断一—出熊,化同百分数卜方法。

(三)数的大区

1、整数的大小比

2、小数的大小比较。\\

3、分数的大小比较。

4、正、负数的大小比较。必须强调在数轴上

负数V0V正数

在数轴上从左到右的顺序就是数从小到大的顺序。

三、数的性质

知识点:

(一)分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),

分数的大小不变。

(二)小数的基本性质。

1、小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。

2、小数的基本性质与分数的基本性质是一致的。

例女口:0.3==0.300

(三)小数点位置移动引起小数大小变化的规律。

注意:移动小数点的位置时,如果位数不够,就用0补位。

如:1、在小数4.25的末尾添上两个“0”,表示把这个数的计数单位从

()改为(),而小数的大小不变。

2、把42%的“%”去掉,原数就()。

3、去掉0.38的小数点,使它变成整数,原数就增加()倍,在38的后面

加上“%”,原数就减少了()%。

四、因数倍数质数合数

知识点:

(一)因数和倍数。

倍数和因数是相互依存的。一个数的因数的个数是有限的,其中最小的因

数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍

数是它本身,没有最大的倍数。

(二)2、3、5的倍数的特征。

1、2的倍数的特征:个位上的数字是0、2、4、6、8。

2、5的倍数的特征:个位上的数字是0或者5。

3、3的倍数的特征:各个数位上的数字的和是3的倍数。

4、既是2又是5的倍数的特征:个位上的数字是0。

5、能同时被2、3、5整除的最小的数是30,最大的两位数是90;最小的三位

数是120;最大的三位数是990;最小的四位数是1020,即它们都是30的倍

数。

(三)奇数和偶数。知道最小的偶数是0,最小的奇数是1。

(四)质数和合数。

最小的质数是2;最小的合数是4;1既不是质数也不是合数。

(五)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因

数。分解质因数的方法。(短除法)

(六)最大公因数和最小公倍数。

了解互质数:公因数只有1的两个数,叫做互质数。

"1和除。以外的自然数:如:1和12…

(1)写互质数J相邻的两个自然数:如:14和15……

、两个质数:如:5和7

(2)20以内既是偶数又是质数的数是2;既是奇数又是合数的数是9和15。

(3)求两个数的最大公因数和最小公倍数的方法:常用列举法、短除法、分解

质因数法如:

16=2X2X2X224=2X2X2X3

16和24的最大公因数是:2X2X2=8(只选相同1对因数中的1个,再把它们

相乘起来。)

(4)求两个数的最大公因数和最小公倍数的特殊方法:

/当两个数是倍数关系时,大数是它们的最小公倍数,小数是它们的最大公因

数。例如:21和7,21是它们的最小公倍数,7是它们的最大公因数。

员如果两个数是互质数,那么它们的最大公因数就是1,最小公倍数就是它们

的乘积。例如:3和7,它们的最大公因数是1,最小公倍数是3X7=21。

如:1、一个数,它的最大因数是48,最小倍数是(),把它分解质因

数是()。

2、a和b是两个自然数,a除以b的商正好是5,那么a和b的最大公因数是

(),最小公倍数是()。

3、如果A=2X3X5,B=3X5X7,那么A和B的最大公因数是(),

最小公倍数是()。

4、既有因数2,又是3和5的倍数的最大三位数是()。

五、数的运算

知识点:

(一)四则运算的意义。

1、加法:

2、减法:

3乘法:

4、除法:

(二)四则运算的计算方法。

注意:分数加减法的计算结果能约分的要约成最简分数,是假分数的能

化成整数的要化成整数,不能化成整数的可以化成带分数也可以保留假分数。

分数除法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(三)整数四则运算中各部分间的关系。

加法r和=加数+加数,差=被减数一减数一个

〔加数=和一另一个加数减数减缴=被减数一差

、被减数=差+减数

乘法j积=因数义因数[商=被除数;除数

[一个因数=积+另一个因数除法J除数=被除数+商

、被除数=商又除数

(备注:不能整除时:被除数=商X除数十余数)

(四)四则运算的估算方法。

(五)四则运算定律、运算性质。

1、运算定律。

名称文字叙述字母表示

加法两个数相加,交换加数的位置,它们的和不变。a+b=b+a

交换律

加法三个数相加,先把前两个数相加,再加上第三个(a+b)+c=a+(b+c)

结合律数,或者先把后两个数相加,再加上第一个数,它

们的和不变。

乘法两个数相乘,交换因数的位置,它们的积不变。axb=bxa

交换律

乘法三个数相乘,先把前两个数相乘,再乘第三个数,(axb)xc=ax(bxc)

结合律或者先把后两个数相乘,再和第一个数相乘,它们

的积不变。

乘法两个数的和与一个数相乘,等于把这两个数分别与(a+b)xc=axc+bxc

分配律这个数相乘,再把两个积相加。或ax(b+c)=axb+axc

2、运算性质。

ra—(b+c)=a—b—c

(1)减法运算性质:va—(b—c)=a—b+c

la-b—c—d=a—(b+c+d)

(2)除法运算性质:ra-r(bXc)=a+b+c

Y

(除数不为0)1a-r(b-rc)=a-rbXc

简便计算。

12.76-(8.9+1.76)6.28X(0.75+6.28)5.8-2.83-0.17

3.28X99+3.281.25X25X32—X17+—X8

2121

(A+A)X7X8

2124

(六)四则混合运算的顺序。

六、解决问题

知识点:

(一)解决问题常用的方法

分析法:从所求的问题出发,逐步找出解答问题所需要的条件,依次推导,一

直到问题得到解决。

综合法:从已知数量与已知数量的关系入手,利用已知信息看能解决什么问

题,一直到求出未知数量的解题方法。

(二)应用题的类型与解题方法

「简单应用题一一用一步计算解答的应用题。

类型■

〔复合应用题一一用两步或两步以上计算来解答的应用题。

解题方法:算术法、方程法、比例解。

(三)常见的复合应用题的类型。

(1)“归一、归总”问题(2)行程问题(3)工程问题

(4)分数(或百分数)问题(5)鸡兔同笼问题

(四)常见的数量关系。

总价=单价义数量

路程=速度X时间

工作总量=工作效率X工作时间

发芽种子数出勤人数

发芽率=X100%出勤率=X100%

种子总数学生总数

图上距离

达标率=舞深义1°°%比例尺=

实际距离

利息=本金X利率X时间应纳税额=应纳税所得额X税率

如:1、甲乙两地相距120km,一辆汽车从甲地开往乙地要3小时,从乙地

返回甲地需要用5小时。求这辆汽车往返甲乙两地的平均速度?(求平均速度)

2、有两列火车同时从甲乙两地相对开出,慢车每小时行70千米,快车每

小时比慢车多行10千米,4小时后两车行了全程的!(行程问题与比例尺)

3、妈妈买20千克大米和5千克面粉,共用去86元,已知大米每千克3.80

元,面粉每千克多少元?(商品问题)

4、12名工人0.4小时可以生产零件72个,照这样计算,15名工人生产180

个零件,需要多少小时?(工程问题)

5、看一本故事书,第一天看了全书的',第二天看了全书的:,这时还剩

43

15页未看。这本书一共有多少页?(单位“1”的量一致)

6、一桶汽油重100千克,第一次用工,第二次用去的是余下工,第二次用去

43

多少千克汽油?(单位“1”的量发生变化)

七、式与方程

知识点:

(一)用字母表示数、运算定律和计算公式。

1、用字母表示数:用字母表示数是代数的基本特点,字母既可以表示数,也

可以表示数量关系、运算定律和计算公式。

2、用字母表示数的写法:

(1)数字与字母、字母与字母相乘时,乘号可以简写成也可以省略不

写。

(2)当1和字母相乘时,1省略不写。

(3)数字与字母相乘时,将数字写在字母的前面。

3、用字母表示除法、分数和比时,表示除数、分母及比的后项的字母不能为

Oo

4、用字母表示运算结果时,必须是最简明的式子。

如:(1)、甲数是a,比乙数少2,甲、乙两数的和是()。

(2)、工地有x吨沙子,每天用2.5吨,用了6天后还剩()吨。

(3)、张老师买了3个足球,每个足球x元,他付给售货员300元,那么3x表

示(),300—3x表示()。

(4)、一个数十位上的数字是a,个位上的数字是b,则这个数用式子表示为

()O

5、用字母表示运算定律。

⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)

⑶乘法交换律:ab=ba⑷乘法结合律:(ab)c=a(bc)

⑸乘法分配律:(a土b)c=ac±bc

6、用字母表示计算公式。

(1)平行四边形的面积:S=ah

(2)三角形的面积:S=ah+2='ah

2

(3)梯形的面积:S=(a+b)h4-2=1(a+b)h

2

(4)长方形的周长和面积(C=2(a+b)

IS=ab

(5)正方形的周长和面积[C=4a

IS=a2

(6)长方体的表面积和体积Js=2(ab+ah+bh)

-v=abh

(7)正方体的表面积和体积:s=6a'

Iv=a

(8)圆的周长和面积:C=Jid=2JirS=nr?

(9)圆环的面积:S=n(R-r2)

(10)圆柱的体积:v=sh=nr2h

(11)圆锥的体积:v=-sh=-nr2h

33

(二)等式和简易方程。

等式和方程的关系:方程是等式,但等式不全是方程。

(三)等式的性质。

1、等式的两边都加上(或减去)同一个数,左右两边仍然相等。

2、等式的两边都乘(或除以)同一个不等于0的数,左右两边仍然相等。

(四)列方程解应用题的一般步骤。

1、弄清题意,找出未知数并用x表示。

2、找出应用题中数量间的相等关系,并根据等量关系列出方程。

3、解方程,求出未知数的值。

4、检验并写出答语。

(五)找等量关系的方法。

1、充分利用表示等量关系的关键性词语。

2、利用常见的四则运算的意义及数量关系。

3、利用常见的数量关系式。

4、利用计算公式。

如:有一根绳子,第一次剪去2米,第二次剪去这根绳子全长的2,这时这根

53

绳子还有|米。这根绳子原来长多少米?

八、常见的量

知识点:

(-)常见的计量单位及其进率。

1、长度单位及其进率:

1000101010

千米(km)---►米(m)----►分米(dm)----,厘米(cm)嚏米(mm)

2、面积单位及其进率:

10010000100100

平方千米---A公顷>平方米-----A平方分米----►平方厘米

3、体积、容积单位及其进率:

10001000

立方米-----A立方分米------►立方厘米

1000

升-----►毫升

1立方分米=1升1立方厘米=1毫升

4、质量单位及其进率:

10001000

吨-----A千克------►克

5、人民币的单位及其进率:

人民币的单位有:元、角、分。

1元=10角1角=10分

6、时间单位及其进率:

(1)年、月、日之间的关系。

每月份三旬:

一年有大月1,3、5、7、8、

上旬(1-10

日);中旬

12个月10、12月(每月31

(11-20

日);下旬(21

(平年天)日〜月底)。

全年小月4、6、9、11月(每

365月30天)

天,闰既不是大月,平年2月28天,

年全年也不是小月。闰年2月29天。

366按第一季度1月、2月、3月

天。)个4月、5月、6月

季第二季度

分第三季度7月、8月、9月

第四季度10月、H月、12月

(2)世纪,日、时、分、秒之间的关系。

1世纪=100年1日=24时1时=60分1分=60秒1星期=7日

(3)平年、闰年的判断方法。

根据公历年份判断:整百、整千的年份是400的倍数,其他年份是4的倍数的

年份都是闰年,反之则是平年。

(二)名数之间的互化。

1、名数的意义:

2、名数的改写:

(1)把高级单位的名数改写成低级单位的名数要乘这两个名数之间的进率。

(2)把低级单位的名数改写成高级单位的名数要除以这两个名数之间的进

率。

乘进率

高级单位«低级单位

除以进率

备注:(大化小乘乘好,小化大除除吧。)

1、一个月分为()旬、()旬和()旬。一月的下旬有()

天,闰年二月的下旬有()天,四月的下旬有()天。

2、采用24时计时法,下午3时就是()时,夜里12时就是()时,

也就是第二天的()时。

3、在。里填上“>"、"V”或。

(1)6.09米06米9厘米(2)1分30秒0130秒

(3)4500毫升04.5立方米(4)10平方千米0999公顷

(5)5千米40米0540米(6)2平方千米0220公顷

4、一名学生上午8时到校,11时40分离校;下午2时10分到校,4时5

分离校,这名学生全天在校时间是多少时多少分?

九、比和比例

知识点:(一)比和比例的联系与区别。

比比例

两个数相除又叫做两个数的表示两个比相等的式子叫做比

意义

比。例。

各部9:6=1.59:6=3:2

前全卡,项比4tITt

分名一内项一

称外项

比的前项和后项同时乘或除以在比例里,两个外项的积等于

基本

相同的数(0除外),比值不变。两个内项的积。

化简比的根据解比例的根据

性质

(二)比和分数、除法的联系。

名称联系

比前项:(比号)后项比值

分数分子一(分数线)分母分数值

除法被除数-(除号)除数商

3、典型题:

()+16=3=24:()=():24=()%=()(填

8

小数)

(三)求比值和化简比。

意义方法结果

求前项除以后项所得用前项除以后项一个数(是

比的商整数、分数

值或小数)

化把两个数的比化成前项和后项都乘或除以同一个数(0除一个比

简最简单的整数比外),也可以用求比值的方法,用前项

比除以后项,得出一个分数值。

(四)正比例和反比例的意义及判断方法。

1、正比例关系式:)=k(一定)

X

2、反比例关系式:xy=k(一定)

3、判断正、反比例的方法。

(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量:分析这两种相关联的量,它们之间的关系是商一定,

还是积一定。

(3)判断:如果商一定,就成正比例,如果积一定,就成反比例。

(4)正比例的图像是过原点(0,0)的一条直线,这也可以作为判断

两种量是否成正比例的依据。

(五)用比例知识解决问题。

1、按比例分配问题。

把一个数量按照一定的比例分配成几部分,求每部分数量各是多

少的应用题叫做按比例分配应用题。

2、用正、反比例知识解答应用题。

(1)分析数量关系。判断成什么比例。

(2)找等量关系。

(3)列比例式。

(4)解比例。

(5)检验并写出答语。

(六)比例尺。

1、一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、常用的比例尺有数值比例尺和线段比例尺两种。

例如:1:5000000是数值比例尺;线段比例尺Illi

050100150千米

3、比例和比例尺的区别:

比例表示两个比相等,而比例尺通常是前项或后项为1的比。

4、求一幅图的比例尺最关键的就是注意单位化聚。

如:要将3千米长的一段公路用3厘米的线段画在图纸上,比例尺就是

3厘米:3千米=3厘米:300000厘米=1:100000

5、已知比例尺、图上距离和实际距离的其中两项,可以求出其中的一个

未知项。

典型题

如:1、2.1:0.9化成最简单的整数比是(),比值是()。

2、甲、乙两数的比是4:5,甲数是乙数的(),乙数是甲、乙两数

和的()。

3、如果aX7=b+2(a、b都不为0),那么a:b=():()。

5、一项工程,甲单独做要4天完成,乙单独做要5天完成,甲和乙的工作时间

比是():();工作效率比是():()。

6、总人数一定,及格率与及格人数成()比例;工作效率一定,工作总量

与工作时间成()比例;分数的分子一定,分数值和分母成()比例;

圆的面积和半径()比例。书的总页数一定,已看的页数与未看的页数

()比例。

7、一个长方体棱长之和是60cm,长、宽、高的比是6:5:4,这个长方体

的表面积和体积各是多少?

8、从“六、一”儿童节那天开始,冬冬前7天看书210页,照这样计算,这个

月冬冬一共看书多少页?(用比例知识解答)

9、如果用边长30cm的方砖给一个房间铺地,需要100块,如果改用边长50cm

的方砖铺地,需要多少块?(用比例知识解答)

10、在比例尺1:1000000是的地图上量得凤庆到临沧的公路长是11cm,若一

辆中巴车以每小时40千米的速度从凤庆开往临沧,大约需要几小时?

第二部分:空间与图形

(一)整理与复习的内容:图形的认识与测量

图形的认识与测量,着重复习小学阶段所学习的各图形的特

点、关系以及部分形体的周长、面积、体积计算。这部分内容从纵

向看,可按平面图形一一立体图形的顺序进行整理;从横向看,可

归结为图形特征的认识,图形周长、面积、体积的测量与计算。

知识要点

(一)线

1、直线、射线和线段

名称图形特征特点

端点个数能否度量其它

直线上任意两点之两点间线

间的部分,叫做线段最短

段。可以度量长

线段两个

用直尺把两点连接度

起来,就得到一条

线段

把线段的两端向相过一点可

反方向无限延长,直线可以向以画无数

就得到了一条直两端无限延条直线,

直线无

线。长,不可度过两点只

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论