2024届上海市闵行区民办上宝中学九年级数学第一学期期末调研模拟试题含解析_第1页
2024届上海市闵行区民办上宝中学九年级数学第一学期期末调研模拟试题含解析_第2页
2024届上海市闵行区民办上宝中学九年级数学第一学期期末调研模拟试题含解析_第3页
2024届上海市闵行区民办上宝中学九年级数学第一学期期末调研模拟试题含解析_第4页
2024届上海市闵行区民办上宝中学九年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市闵行区民办上宝中学九年级数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点.若PB切⊙O于点B,则PB的最小值是()A. B. C.3 D.22.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根为0,则m为()A.0 B.1 C.﹣1 D.1或﹣13.下列说法正确的是()A.若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B.可能性很大的事件在一次试验中必然会发生C.相等的圆心角所对的弧相等是随机事件D.掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等4.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1 B.﹣3 C.5 D.15.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. B. C. D.6.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%7.如图,在中,若,则的长是()A. B. C. D.8.在平面直角坐标系中,二次函数的图象可能是()A. B. C. D.9.对于二次函数y=2(x﹣1)2﹣3,下列说法正确的是()A.图象开口向下B.图象和y轴交点的纵坐标为﹣3C.x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣110.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④ B.①④ C.②③④ D.①②③二、填空题(每小题3分,共24分)11.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.12.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.13.某学生想把放置在水平桌面上的一块三角板(,),绕点按顺时针方向旋转角,转到的位置,其中、分别是、的对应点,在上(如图所示),则角的度数为______.14.如图,AB为的直径,弦CD⊥AB于点E,点F在圆上,且=,BE=2,CD=8,CF交AB于点G,则弦CF的长度为__________,AG的长为____________.15.方程的根是___________.16.若函数为关于的二次函数,则的值为__________.17.□ABCD的两条对角线AC、BD相交于O,现从下列条件:①AC⊥BD②AB=BC③AC=BD④∠ABD=∠CBD中随机取一个作为条件,可推出□ABCD是菱形的概率是_________18.方程的根是__________.三、解答题(共66分)19.(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)在扇统计图中,表示“QQ”的扇形圆心角的度数为_____;根据这次统计数据了解到最受学生欢迎的沟通方式是______.(2)将条形统计图补充完整;(3)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.20.(6分)已知关于的一元二次方程有两个不相等的实数根,.(1)若为正整数,求的值;(2)若,满足,求的值.21.(6分)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,1),C(-1,2).(1)画出以点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C'(2)求点C在旋转过程中所经过的路径的长.23.(8分)解方程:x+3=x(x+3)24.(8分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.(10分)一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面.(1)求圆形滚轮的半径的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:).26.(10分)已知:如图(1),射线AM∥射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC.(1)求证:△ADE∽△BEC;(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;(3)当AD+DE=AB=时.设AE=m,请探究:△BEC的周长是否与m值有关?若有关,请用含有m的代数式表示△BEC的周长;若无关,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】由切线的性质可得△OPB是直角三角形,则PB2=OP2﹣OB2,如图,又OB为定值,所以当OP最小时,PB最小,根据垂线段最短,知OP=3时PB最小,然后根据勾股定理即可求出答案.【详解】解:∵PB切⊙O于点B,∴∠OBP=90°,∴PB2=OP2﹣OB2,如图,∵OB=2,∴PB2=OP2﹣4,即PB=,∴当OP最小时,PB最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PB的最小值为.故选:B.【点睛】此题主要考查了切线的性质、勾股定理及垂线段最短等知识,属于常考题型,如何确定PB最小时点P的位置是解题的关键.2、C【分析】将0代入一元二次方程中建立一个关于m的一元二次方程,解方程即可,再根据一元二次方程的定义即可得出答案.【详解】解:依题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1.故选:C.【点睛】本题主要考查一元二次方程的根及一元二次方程的定义,准确的运算是解题的关键.3、C【分析】根据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断.【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误.B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以该选项错误;故选:C.【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键.4、D【分析】把x=﹣1代入方程2x2﹣mx﹣3=0得到2+m﹣3=0,然后解关于m的方程即可.【详解】把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选D.【点睛】本题考查了一元二次方程的解,熟知能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.5、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【详解】解:在Rt△ABC中,

∵AC=3,BC=4,

∴AB==1.

过C作CM⊥AB,交AB于点M,如图所示,

由垂径定理可得M为AE的中点,

∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=1,

∴CM=,

在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,

解得:AM=,

∴AE=2AM=.

故选:C.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6、B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.7、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【详解】解:∵,∴,∵,∴,∵,∴.【点睛】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.8、A【分析】根据二次函数图像的特点可得.【详解】解:二次函数与轴有两个不同的交点,开口方向向上.故选:A.【点睛】本题考查了二次函数的图象,解决本题的关键是二次函数的开口方向和与x轴的交点.9、C【解析】试题分析:A、y=2(x-1)2-3,∵a=2>0,∴图象的开口向上,故本选项错误;B、当x=0时,y=2(0-1)2-3=-1,即图象和y轴的交点的纵坐标为-1,故本选项错误;C、∵对称轴是直线x=1,开口向上,∴当x<1时,y随x的增大而减少,故本选项正确;C、图象的对称轴是直线x=1,故本选项错误.故选:C.点睛:本题考查了二次函数的图象和性质的应用,主要考查学生的观察能力和理解能力,用了数形结合思想.10、D【详解】∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵=,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.二、填空题(每小题3分,共24分)11、(2,10)16【分析】将点P1的横坐标2代入函数表达式即可求出点P1纵坐标,将右边三个矩形平移,如图所示,可得出所求阴影部分面积之和等于矩形ABCP1的面积,求出即可.【详解】解:因为点P1的横坐标为2,代入,得y=10,∴点P1的坐标为(2,10),将右边三个矩形平移,如图所示,

把x=10代入反比例函数解析式得:y=2,∴由题意得:P1C=AB=10-2=8,

则S1+S2+S3+S4=S矩形ABCP1=2×8=16,

故答案为:(2,10),16.【点睛】此题考查了反比例函数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.12、0.1【分析】利用频数统计图可得,在试验中图钉针尖朝上的频率在0.1波动,然后利用频率估计概率可得图钉针尖朝上的概率.【详解】解:由统计图得,在试验中得到图钉针尖朝上的频率在0.1波动,所以可根据计图钉针尖朝上的概率为0.1.【点睛】本题考查了频数统计图用频率估计概率,解决本题的关键是正确理解题意,明确频率和概率之间的联系和区别.13、60°【分析】根据题意有∠ACB=90,∠A=30,进而可得∠ABC=60,又有∠ACA′=BCB′=∠ABA′=,可得∠CBB′=(180−),代入数据可得答案.【详解】∵∠ACB=90,∠A=30,∴∠ABC=60,∴∠ACA′=BCB′=∠ABA′=,∠CBB′=(180−),∴=∠ABC=60.故答案为:60.【点睛】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点是旋转中心;②旋转方向;③旋转角度.14、;【分析】如图(见解析),连接CO、DO,并延长DO交CF于H,由垂径定理可知CE,在中,可以求出半径CO的长;又由=和垂径定理得,根据圆周角定理可得,从而可知,在中可求出FG,也就可求得CF的长度;在中利用勾股定理求出DH,再求出,同样地,在中利用余弦函数求出OG,从而可求得.【详解】,,,(垂径定理)连接,设,则在中,解得,连接DO并延长交CF于H=,由垂径定理可知,是所对圆周角,是所对圆心角,且=2,,由勾股定理得:,.【点睛】本题考查了垂径定理、圆周角定理、直角三角形中的余弦三角函数,通过构造辅助线,利用垂径定理和圆周角定理是解题关键.15、,.【解析】试题分析:,∴,∴,.故答案为,.考点:解一元二次方程-因式分解法.16、2【分析】根据二次函数的定义,列出关于m的方程和不等式,即可求解.【详解】∵函数为关于的二次函数,∴且,∴m=2.故答案是:2.【点睛】本题主要考查二次函数的定义,列出关于m的方程和不等式,是解题的关键.17、【分析】根据菱形的判定方法直接就可得出推出菱形的概率.【详解】根据“对角线互相垂直的平行四边形是菱形”直接判断①符合题意;根据“一组邻边相等的平行四边形是菱形”可直接判断②符合题意;根据“对角线相等的平行四边形是矩形”,所以③不符合菱形的判定方法;,,BC=CD,是菱形,故④符合题意;推出菱形的概率为:.故答案为.【点睛】本题主要考查菱形的判定及概率,熟记菱形的判定方法是解题的关键,然后根据概率的求法直接得出答案.18、【分析】由题意根据直接开平方法的步骤求出x的解即可.【详解】解:∵,∴x=±2,∴.故答案为:.【点睛】本题考查解一元二次方程-直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.三、解答题(共66分)19、(1)108°,微信;(2)见解析;(3)【分析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用QQ的百分比即可求出QQ的扇形圆心角度数,根据总人数及所占百分比即可求出使用短信的人数,总人数减去除微信之外的四种方式的人数即可得到使用微信的人数.

(2)根据短信与微信的人数即可补全条形统计图.(3)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,

∴此次共抽查了:20÷20%=100人

喜欢用QQ沟通所占比例为:,∴“QQ”的扇形圆心角的度数为:360°×=108°,喜欢用短信的人数为:100×5%=5(人)

喜欢用微信的人数为:100−20−5−30−5=40(人),∴最受学生欢迎的沟通方式是:微信,故答案为:108°,微信;(2)补全条形图如下:(3)列出树状图,如图所示所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况,

甲、乙两名同学恰好选中同一种沟通方式的概率为:.【点睛】本题考查统计与概率,解题的关键是熟练运用统计与概率的相关公式,本题属于中等题型.20、(1),2;(2)【分析】(1)根据关于的一元二次方程有两个不相等的实数根,得到,于是得到结论;(2)由根与系数的关系可得,,代入,解方程即可得到结论.【详解】(1)∵关于的一元二次方程有两个不相等的实数根,∴,解得:,∵为正整数,∴,2;(2)∵,,∵,∴,∴,解得:,,∵,∴.【点睛】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程组是解答此题的关键.21、(1)50,30;(2)答案见解析;(3)36;(4)1800人.【分析】(1)由赞同的人数除以赞同的人数所占的百分比,即可求出样本容量,再求出无所谓态度的人数,进而求出a的值;(2)由(1)可知无所谓态度的人数,将条形统计图补充完整即可;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分比,用样本估计总体的思想计算即可.【详解】(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800人.考点:条形统计图;扇形统计图;用样本估计总体.22、(1)见解析;(2)【解析】(1)根据网格结构找出点A、B、C绕点O顺时针旋转90∘后的对应点的位置,然后顺次连接即可.(2)在旋转过程中,C所经过的路程为下图中扇形的弧长,即利用扇形弧长公式计算即可.【详解】(1)如图,连接OA、OB、OC并点O为旋转中心,顺时针旋转90°得到A'、B'、C',连接A'B'、B'C'、A'C',△A'B'C'就是所求的三角形.(2)C在旋转过程中所经过的路程为扇形的弧长;所以【点睛】本题考查了旋转作图以及扇形的弧长公式的计算,作出正确的图形是解本题的关键.23、x1=1,x2=﹣1【分析】先利用乘法分配律将括号外面的分配到括号里面,再通过移项化成一元二次方程的标准形式,利用提取公因式即可得出结果.【详解】解:方程移项得:(x+1)﹣x(x+1)=0,分解因式得:(x+1)(1﹣x)=0,解得:x1=1,x2=﹣1.【点睛】本题主要考查的是一元二次方程的解法,一元二次方程的解法主要包括:提取公因式,公式法,十字相乘等.24、(1)见解析;(2)见解析.【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.25、(1);(2)【分析】(1)过点作于点,交于点,由平行得到,再根据相似三角形的性质得到,列出关于半径的方程,解方程即可得解;(2)在(1)结论的基础上结合已知条件,利用锐角三角函数解即可得解.【详解】解:(1)过点作于点,交于点,如图:∴∴∴设圆形滚轮的半径的长是∴,即∴∴圆形滚轮的半径的长是;(2)∵∴在中,∴.故答案是:(1);(2)【点睛】本题考查了解直角三角形以及相似三角形的判定和性质,在求线段长度时,可以通过建立方程模型来解决问题.26、(1)详见解析;(2)详见解析;(3)的周长与m值无关,理由详见解析.【分析】(1)由直角梯形ABCD中∠A为直角,得到三角形ADE为直角三角形,可得出两锐角互余,再由DE与EC垂直,利用垂直的定义得到∠DEC为直角,利用平角的定义推出一对角互余,利用同角的余角相等可得出一对角相等,再由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论