广东省深圳市2024届数学高二第二学期期末质量检测模拟试题含解析_第1页
广东省深圳市2024届数学高二第二学期期末质量检测模拟试题含解析_第2页
广东省深圳市2024届数学高二第二学期期末质量检测模拟试题含解析_第3页
广东省深圳市2024届数学高二第二学期期末质量检测模拟试题含解析_第4页
广东省深圳市2024届数学高二第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市2024届数学高二第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中,常数项为()A.-15 B.16 C.15 D.-162.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.3.已知命题,;命题在中,若,则.下列命题为真命题的是()A. B. C. D.4.已知的展开式中的系数为,则()A.1 B. C. D.5.已知复数满足,则复数在复平面内对应的点为()A. B. C. D.6.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有()A.8种 B.15种 C.种 D.种8.由①安梦怡是高二(1)班的学生,②安梦怡是独生子女,③高二(1)班的学生都是独生子女,写一个“三段论”形式的推理,则大前提,小前提和结论分别为()A.②①③ B.②③① C.①②③ D.③①②9.等于()A. B. C. D.10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.11.若“直线与圆相交”,“”;则是()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件12.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足约束条件则z=x−2y的最小值为__________.14.已知a,b∈{0,1,2,3},则不同的复数z=a+bi的个数是______.15.已知等差数列的前项和为,,,则数列的前项和为__________.16.化简______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:交强险浮动因素和浮动费率比率表浮动因素浮动比率上一年度未发生有责任道路交通事故下浮10%上两年度未发生有责任道路交通事故下浮上三年度未发生有责任道路交通事故下浮30%上一个年度发生一次有责任不涉及死亡的道路交通事故0%上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故上浮10%上一个年度发生有责任交通死亡事故上浮30%某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型A1A2A3A4A5A6数量105520155以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.18.(12分)已知函数.(1)讨论在上的单调性;(2)若,,求正数的取值范围.19.(12分)已知函数,.(Ⅰ)当时,解不等式;(Ⅱ)当时,恒成立,求实数的取值范围.20.(12分)已知函数(为自然对数的底数).(1)若,求函数的单调区间;(2)在(1)的条件下,求函数在区间上的最大值和最小值.21.(12分)已知圆C经过点,且圆心C在直线上,又直线与圆C相交于P,Q两点.(1)求圆C的方程;(2)若,求实数的值.22.(10分)双曲线的左、右焦点分别为、,直线过且与双曲线交于、两点.(1)若的倾斜角为,,是等腰直角三角形,求双曲线的标准方程;(2),,若的斜率存在,且,求的斜率;(3)证明:点到已知双曲线的两条渐近线的距离的乘积为定值是该点在已知双曲线上的必要非充分条件.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

把按照二项式定理展开,可得的展开式中的常数项.【题目详解】∵()•(1),故它的展开式中的常数项是1+15=16故选:B【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式,项的系数的性质,熟记公式是关键,属于基础题.2、D【解题分析】由题设中提供的三视图中的图形信息与数据信息可知该几何体是一个底面是边长分别为3,3,4的等腰三角形,高是4的三棱锥,如图,将其拓展成三棱柱,由于底面三角形是等腰三角形,所以顶角的余弦为,则,底面三角形的外接圆的半径,则三棱锥的外接球的半径,其表面积,应选答案D。3、C【解题分析】

判断出命题、的真假,即可判断出各选项中命题的真假,进而可得出结论.【题目详解】函数在上单调递增,,即命题是假命题;又,根据正弦定理知,可得,余弦函数在上单调递减,,即命题是真命题.综上,可知为真命题,、、为假命题.故选:C.【题目点拨】本题考查复合命题真假的判断,解答的关键就是判断出各简单命题的真假,考查推理能力,属于中等题.4、D【解题分析】

由题意可得展开式中x2的系数为前一项中常数项与后一项x的二次项乘积,加上第一项x的系数与第二项x的系数乘积的和,由此列方程求得a的值.【题目详解】根据题意知,的展开式的通项公式为,∴展开式中含x2项的系数为a=,即10﹣5a=,解得a=.故选D.【题目点拨】本题主要考查了二项式定理的应用问题,利用二项式展开式的通项公式是解决此类问题的关键.5、A【解题分析】

利用复数除法运算,化简为的形式,由此求得对应的点的坐标.【题目详解】依题意,对应的点为,故选A.【题目点拨】本小题主要考查复数的除法运算,考查复数对应点的坐标,属于基础题.6、A【解题分析】

首先解这两个不等式,然后判断由题设能不能推出结论和由结论能不能推出题设,进而可以判断出正确的选项.【题目详解】,,显然由题设能推出结论,但是由结论不能推出题设,因此“”是“”的充分不必要条件,故本题选A.【题目点拨】本题考查了充分条件、必要条件的判断,解决本问题的关键是正确求出不等式的解集.7、C【解题分析】由题意得,每一封不同的电子邮件都有三种不同的投放方式,所以把封电子邮件投入个不同的邮箱,共有种不同的方法,故选C.8、D【解题分析】

根据三段论推理的形式“大前提,小前提,结论”,根据大前提、小前提和结论的关系,即可求解.【题目详解】由题意,利用三段论的形式可得演绎推理的过程是:大前提:③高二(1)班的学生都是独生子女;小前提:①安梦怡是高二(1)班的学生;结论:②安梦怡是独生子女,故选D.【题目点拨】本题主要考查了演绎推理中的三段论推理,其中解答中正确理解三段论推理的形式是解答的关键,着重考查了推理与论证能力,属于基础题.9、A【解题分析】

根据排列数的定义求解.【题目详解】,故选A.【题目点拨】本题考查排列数的定义.10、C【解题分析】由题意得为球的直径,而,即球的半径;所以球的表面积.本题选择C选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.11、B【解题分析】

直线y=x+b与圆x2+y2=1相交⇔1,解得b.即可判断出结论.【题目详解】直线y=x+b与圆x2+y2=1相交⇔1,解得.∴“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的必要不充分条件.故选:B.【题目点拨】本题考查了充分必要条件,直线与圆的位置关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.12、B【解题分析】

解:根据题意,播下4粒种子恰有2粒发芽即4次独立重复事件恰好发生2次,由n次独立重复事件恰好发生k次的概率的公式可得,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

试题分析:由得,记为点;由得,记为点;由得,记为点.分别将A,B,C的坐标代入,得,,,所以的最小值为.【考点】简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.14、1【解题分析】

分a=b和a≠b两种情况讨论,结合排列数公式求解.【题目详解】当a=b时,复数z=a+bi的个数是4个;当a≠b时,由排列数公式可知,组成不同的复数z=a+bi的个数是A42∴不同的复数z=a+bi的个数是1个.故答案为:1.【题目点拨】本题主要考查了排列及排列数公式,涉及分类讨论思想,属于中档题.15、【解题分析】

由,列出关于首项为,公差为的方程组,解方程求得,可得,利用等比数列的求和公式可得结果.【题目详解】设等差数列的首项为,公差为,则解得,所以,所以,所以是以2为首项,16为公比的等比数列,所以数列的前项和为,故答案为.【题目点拨】本题主要考查等差数列的通项公式以及等比数列的求和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.16、【解题分析】

利用模的性质、复数的乘方运算法则、模的计算公式直接求解即可.【题目详解】.故答案为:【题目点拨】本题考查了复数模的性质及计算公式,考查了复数的乘方运算,考查了数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析,(2)①,②万元【解题分析】

(1)由题意列出X的可能取值为,,,,,,结合表格写出概率及分布列,再求解期望(2)①建立二项分布求解三辆车中至多有一辆事故车的概率②先求出一辆二手车利润的期望,再乘以100即可【题目详解】(1)由题意可知:X的可能取值为,,,,,由统计数据可知:,,,,,.所以的分布列为:.(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故的概率为,三辆车中至多有一辆事故车的概率为:.②设Y为给销售商购进并销售一辆二手车的利润,Y的可能取值为所以Y的分布列为:YP所以.所以该销售商一次购进辆该品牌车龄已满三年的二手车获得利润的期望值为万元.【题目点拨】本题考查离散型随机变量及分布列,考查二项分布,考查计算能力,是基础题18、(1)见解析;(2)【解题分析】分析:(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出f(x)的最大值,得到关于a的函数,结合函数的单调性求出a的范围即可.详解:(1),当时,,在上单调递减;当时,若,;若,.∴在上单调递减,在上单调递增.当时,,在上单调递减;当时,若,;若,,∴在上单调递减,在上单调递增.综上可知,当时,在上单调递减;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)∵,∴当时,;当时,.∴.∵,,∴,即,设,,当时,;当时,,∴,∴.点睛:这个题目考查的是利用导数研究函数的单调性,用导数解决恒成立求参的问题;对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.19、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)利用绝对值三角不等式求得的最小值为,等价于,分类讨论,求得a的取值范围.【题目详解】(Ⅰ)当时,不等式,等价于;当时,不等式化为,即,解集为;当时,不等式化为,解得;当时,不等式化为,即,解得;综上,不等式的解集为.(Ⅱ)当时,,等价于,若,则,∴;若,则,∴.综上,实数的取值范围为.【题目点拨】本题考查了绝对值不等式的解法,函数恒成立问题,体现了转化、分类讨论的数学思想.20、(1)单调递增区间为,;单调递减区间为;(2)见解析.【解题分析】

(1)将代入函数中,求出导函数大于零求出递增区间,导函数小于零求出递减区间;(2)分为和和三种情况分别判断在上的单调性,然后求出最大值和最小值.【题目详解】(1)若,则,求导得.因为,令,即,解得或令,即,解得∴函数在和上递增,在上递减.即函数的单调递增区间为,;单调递减区间为(2)①当时,∵在上递减,∴在区间上的最大值为,在区间上的最小值为.②当时,∵在上递减,在上递增,且,∴在上的最大值为,在区间上的最小值为.③当时,∵在上递减,在上递增,且,∴在上的最大值为,在区间上的最小值为.【题目点拨】本题考查了利用导数研究函数的单调性和最值,考查了转化思想和分类讨论思想,属中档题.21、(1);(2)0【解题分析】(1)设圆心C(a,a),半径为r.因为圆C经过点A(-2,0),B(0,2),所以|AC|=|BC|=r,易得a=0,r=2,所以圆C的方程是x2+y2=4.(2)因为·=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论