版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市迎泽区太原五中2024届高二数学第二学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有()A.14种 B.种 C.种 D.24种2.已知点在抛物线的准线上,为的焦点,过点的直线与相切于点,则的面积为()A.1 B.2 C. D.43.设,则,,的大小关系是()A. B.C. D.4.已知集合,,若,则等于()A.1 B.2 C.3 D.45.已知随机变量的分布如下表所示,则等于()A.0 B.-0.2 C.-1 D.-0.36.设为两个随机事件,给出以下命题:(1)若为互斥事件,且,,则;(2)若,,,则为相互独立事件;(3)若,,,则为相互独立事件;(4)若,,,则为相互独立事件;(5)若,,,则为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.47.已知i是虚数单位,若z=1+i1-2i,则z的共轭复数A.-13-i B.-18.已知的边,的长分别为20,18,,则的角平分线的长为()A. B. C. D.9.圆截直线所得的弦长为,则()A. B. C. D.210.已知随机变量服从正态分布,则等于()A. B. C. D.11.“1<x<2”是“|x|>1”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.设向量与,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,函数,若在区间上单调递减,则的取值范围是____.14.若是函数的极值点,则的极小值为______.15.以下四个关于圆锥曲线命题:①“曲线为椭圆”的充分不必要条件是“”;②若双曲线的离心率,且与椭圆有相同的焦点,则该双曲线的渐近线方程为;③抛物线的准线方程为;④长为6的线段的端点分别在、轴上移动,动点满足,则动点的轨迹方程为.其中正确命题的序号为_________.16.某产品发传单的费用x与销售额y的统计数据如表所示:发传单的费用x万元1245销售额y万元10263549根据表可得回归方程,根据此模型预报若要使销售额不少于75万元,则发传单的费用至少为_________万元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数/(x.(1)当时,求在最小值;(2)若存在单调递减区间,求的取值范围;(3)求证:.18.(12分)已知椭圆()的一个顶点为,离心率为,过点及左焦点的直线交椭圆于,两点,右焦点设为.(1)求椭圆的方程;(2)求的面积.19.(12分)某校20名同学的数学和英语成绩如下表所示:将这20名同学的两颗成绩绘制成散点图如图:根据该校以为的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩,考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的)在英语考试中作弊,故将两位同学的两科成绩取消.取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;取消两位作弊同学的两科成绩后,求数学成绩x与英语成绩y的线性回归直线方程,并据此估计本次英语考试学号为8的同学如果没有作弊的英语成绩.(结果保留整数)附:位同学的两科成绩的参考数据:参考公式:20.(12分)已知是函数()的一条对称轴,且的最小正周期为.(1)求值和的单调递增区间;(2)设角为的三个内角,对应边分别为,若,,求的取值范围.21.(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的直角坐标方程;(2)若直线截曲线所得的弦长为,求的值.22.(10分)甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率,(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;(Ⅱ)求甲恰好比乙多击中目标次的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】五人选四人有种选择方法,分类讨论:若所选四人为甲乙丙丁,有种;若所选四人为甲乙丙戊,有种;若所选四人为甲乙丁戊,有种;若所选四人为甲丙丁戊,有种;若所选四人为乙丙丁戊,有种;由加法原理:不同组队方式有种.2、B【解题分析】
根据题中条件可得到抛物线方程,由直线和抛物线相切得到切点N的坐标,进而求得面积.【题目详解】点在抛物线的准线上,可得到p=2,方程为:,切点N(x,y),满足,过点的直线设为和抛物线联立得到,,取k=1,此时方程为的面积为:故答案为:B.【题目点拨】这个题目考查了直线和抛物线的位置关系,当直线和抛物线相切时,可以联立直线和抛物线,使得判别式等于0,也可以设出切点坐标求导得到该点处的斜率.3、A【解题分析】
先根据来分段,然后根据指数函数性质,比较出的大小关系.【题目详解】由于,而,故,所以选A.【题目点拨】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4、D【解题分析】
由已知可得,则.【题目详解】由,得或又由,得,则,即故选:D【题目点拨】本题考查了集合的并集运算,属于基础题.5、B【解题分析】
先根据题目条件求出值,再由离散型随机变量的期望公式得到答案。【题目详解】由题可得得,则由离散型随机变量的期望公式得故选B【题目点拨】本题考查离散型随机变量的分布列和期望公式,属于一般题。6、D【解题分析】
根据互斥事件的加法公式,易判断(1)的正误;根据相互对立事件的概率和为1,结合相互独立事件的概率满足,可判断(2)、(3)、(4)、(5)的正误.【题目详解】若为互斥事件,且,则,故(1)正确;若则由相互独立事件乘法公式知为相互独立事件,故(2)正确;若,则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(3)正确;若,当为相互独立事件时,故(4)错误;若则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(5)正确.故选D.【题目点拨】本题考查互斥事件、对立事件和独立事件的概率,属于基础题.7、C【解题分析】
通过分子分母乘以分母共轭复数即可化简,从而得到答案.【题目详解】根据题意z=1+i1+2i【题目点拨】本题主要考查复数的四则运算,共轭复数的概念,难度较小.8、C【解题分析】
利用角平分线定理以及平面向量的线性运算法则可得,两边平方,利用平面向量数量积的运算法则,化简即可得结果.【题目详解】如图,因为是的角平分线,所以,所以,即.两边平方得,所以,故选C.【题目点拨】本题主要考查平面向量的线性运算法则,以及平面向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.9、A【解题分析】
将圆的方程化为标准方程,结合垂径定理及圆心到直线的距离,即可求得的值.【题目详解】圆,即则由垂径定理可得点到直线距离为根据点到直线距离公式可知,化简可得解得故选:A【题目点拨】本题考查了圆的普通方程与标准方程的转化,垂径定理及点到直线距离公式的应用,属于基础题.10、D【解题分析】
根据正态分布的性质求解.【题目详解】因为随机变量服从正态分布,所以分布列关于对称,又所有概率和为1,所以.故选D.【题目点拨】本题考查正态分布的性质.11、A【解题分析】
解不等式,进而根据充要条件的定义,可得答案.【题目详解】由题意,不等式,解得或,故“”是“”成立的充分不必要条件,故选A.【题目点拨】本题主要考查了不等式的求解,以及充分、必要条件的判定,其中解答熟记充分条件、必要条件的判定方法是解答的关键,着重考查了推理与运算能力,属于基础题.12、B【解题分析】
利用列方程,解方程求得的值,进而求得的值.【题目详解】由于,所以,即,而,故,故选B.【题目点拨】本小题主要考查向量数量积的坐标运算,考查二倍角公式,考查特殊角的三角函数值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据已知可得,恒成立,根据二次函数的图像,列不等式组解决问题.【题目详解】,在区间上单调递减,,解得.故填:.【题目点拨】本题考查了已知函数在某区间的单调性求参数的取值范围,根据函数是单调递减,转化为恒成立,根据二次函数的图像列不等式组,得到参数的取值范围,一般恒成立的问题也可转化为参变分离的方法,转化为求函数的最值问题.14、【解题分析】
求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.【题目详解】,是的极值点,,即,解得,,,由,得或;由,得,在上单调递增,在上单调递减,在上单调递增,
的极小值为.
故答案为:.【题目点拨】本题考查了利用导数研究函数的极值,属中档题.15、③④【解题分析】
对于①,求出“曲线为椭圆”的充要条件,判断与“”关系,即得①的正误;对于②,根据已知条件求出双曲线的方程,从而求出渐近线方程,即得②的正误;对于③,把抛物线的方程化为标准式,求出准线方程,即得③的正误;对于④,设,根据,可得,代入,求出动点的轨迹方程,即得④的正误.【题目详解】对于①,“曲线为椭圆”的充要条件是“且”.所以“曲线为椭圆”的必要不充分条件是“”,故①错误;对于②,椭圆的焦点为,又双曲线的离心率,所以双曲线的方程为,所以双曲线的渐近线方程为,故②错误;对于③,抛物线的方程化为标准式,准线方程为,故③正确;对于④,设,,,即,即动点的轨迹方程为.故④正确.故答案为:③④.【题目点拨】本题考查充分必要条件、圆锥曲线的性质和求轨迹方程的方法,属于中档题.16、1.【解题分析】
计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到,进而构造不等式,可得答案.【题目详解】由已知可得:,,代入,得,令解得:,故答案为:1.【题目点拨】本题考查的知识点是线性回归方程,难度不大,属于基础题.在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2);(3)见解析【解题分析】分析:(I)可先求f′(x),从而判断f(x)在x∈[1,+∞)上的单调性,利用其单调性求f(x)在x∈[1,+∞)最小值;(Ⅱ)求h′(x),可得若f(x)存在单调递减区间,需h′(x)<0有正数解.从而转化为:ax2+2(a﹣1)x+a<0有x>0的解.通过对a分a=0,a<0与当a>0三种情况讨论解得a的取值范围;(Ⅲ)(法一)根据(Ⅰ)的结论,当x>1时,,即.,再构造函数,令,有,从而,问题可解决;(法二)可用数学归纳法予以证明.当n=1时,ln(n+1)=ln2,3ln2=ln8>1⇒,成立;设时,命题成立,即,,再去证明n=k+1时,即可(需用好归纳假设).详解:(1),定义域为.∵∴在上是增函数..(2)因为因为若存在单调递减区间,所以有正数解.即有有解.①当时,明显成立.②当时,开口向下的抛物线,总有有解;③当时,开口向上的抛物线,即方程有正跟.当时,;,解得.综合①②③知:.综上所述:的取值范围为.(3)(法一)根据(1)的结论,当时,,即.令,则有,∴.∵,∴.(法二)当时,.∵,∴,即时命题成立.设当时,命题成立,即.∴时,根据(1)的结论,当时,,即.令,则有,则有,即时命题也成立.因此,由数学归纳法可知不等式成立.点睛:本题考查函数的导数的应用,考查最值的求法,数学归纳法的应用,考查转化思想以及计算能力.函数在一个区间上单调递增,则函数的导函数大于等于0恒成立,函数在一个区间上存在单调增区间,则函数的导函数在这个区间上大于0有解.18、(1);(2).【解题分析】
(1)根据椭圆的基本概念和平方关系,建立关于、、的方程,解出,,从而得到椭圆的方程;(2)求出直线的斜率得直线的方程为,与椭圆方程联解并结合根与系数的关系算出,结合弦长公式可得,最后利用点到直线的距离公式求出到直线的距离,即可得到的面积.【题目详解】解:(1)由题意知,,又∵,∴.∴椭圆方程为.(2)∵,∴直线的方程为,由,得.∵,∴直线与椭圆有两个公共点,设为,,则,∴,又点到直线的距离,故.【题目点拨】本题给出椭圆满足的条件,求椭圆的方程并求三角形的面积.着重考查了椭圆的标准方程与简单几何性质、直线与圆角曲线的位置关系等知识,属于中档题.19、90分;分.【解题分析】
计算出剩下名学生的数学、英语成绩之和,于是求得平均分;可先计算出,再利用公式可计算出线性回归方程,代入学号为的同学成绩,即得答案.【题目详解】由题名学生的数学成绩之和为,英语成绩之和为取消两位作弊同学的两科成绩后,其余名学生的数学成绩之和为其余名学生的英语成绩之和为其余名学生的数学平均分,英语平均分都为;不妨设取消的两名同学的两科成绩分别为数学成绩与英语成绩的线性回归方程代入学号为的同学成绩,得本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【题目点拨】本题主要考查平均数及方差,线性回归方程的相关计算,意在考查学生的转化能力,分析能力及运算技巧,难度中等.20、(1),(2)【解题分析】
(1)由三角函数的辅助角公式,得,求得,又由为对称轴,求得,进而得到则,得出函数的解析式,即可求解函数的单调递增区间;(2)由(1)和,求得,在利用正弦定理,化简得,利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届山西省晋中市生物高一第一学期期末教学质量检测试题含解析
- 内务培训课件
- 火锅粘土活动策划方案(3篇)
- 疾控中心防疫物资管理制度(3篇)
- 社区迁入迁出户口管理制度(3篇)
- 管道安全管理制度考题答案(3篇)
- 美团美发员工管理制度(3篇)
- 车辆安全考核管理制度(3篇)
- 酒店贴身管家管理制度培训(3篇)
- 纳米催化技术
- (一诊)重庆市九龙坡区区2026届高三学业质量调研抽测(第一次)物理试题
- 2026年榆能集团陕西精益化工有限公司招聘备考题库完整答案详解
- 2026广东省环境科学研究院招聘专业技术人员16人笔试参考题库及答案解析
- 边坡支护安全监理实施细则范文(3篇)
- 6.1.3化学反应速率与反应限度(第3课时 化学反应的限度) 课件 高中化学新苏教版必修第二册(2022-2023学年)
- 北京市西城区第8中学2026届生物高二上期末学业质量监测模拟试题含解析
- 2026年辽宁轻工职业学院单招综合素质考试参考题库带答案解析
- 2026届北京市清华大学附中数学高二上期末调研模拟试题含解析
- 医院实习生安全培训课课件
- 2026年保安员理论考试题库
- 四川省成都市武侯区西川中学2024-2025学年八上期末数学试卷(解析版)
评论
0/150
提交评论