版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省姜堰区实验初中2024届数学高二第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法中,正确说法的个数是()①在用列联表分析两个分类变量与之间的关系时,随机变量的观测值越大,说明“与有关系”的可信度越大②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3③已知两个变量具有线性相关关系,其回归直线方程为,若,,则A.0 B.1 C.2 D.32.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了套卷,即:全国I卷,全国II卷,全国III卷.小明同学马上进入高三了,打算从这套题中选出套体验一下,则选出的3套题年份和编号都各不相同的概率为()A. B. C. D.3.曲线与直线围成的平面图形的面积为()A. B. C. D.4.已知函数,则此函数的导函数A. B.C. D.5.函数的单调递减区间为()A. B. C. D.6.若点在椭圆内,则被所平分的弦所在的直线方程是,通过类比的方法,可求得:被所平分的双曲线的弦所在的直线方程是()A. B.C. D.7.六位同学排成一排,其中甲和乙两位同学相邻的排法有()A.60种 B.120种 C.240种 D.480种8.已知双曲线过,两点,点为该双曲线上除点,外的任意一点,直线,斜率之积为,则双曲线的方程是()A. B. C. D.9.已知函数,若是函数的唯一极值点,则实数k的取值范围是()A. B. C. D.10.已知是函数的零点,是函数的零点,且满足,则实数的最小值是().A.-1 B. C. D.11.()A.9 B.12 C.15 D.312.已知,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知P是椭圆上的一点,F1,F2是椭圆的两个焦点,且∠F1PF2=60°,则△F1PF2的面积是______.14.在中,,,,点在线段上,若,则________.15.的展开式中含项的系数为_________.16.在平面直角坐标系中,抛物线的焦点为,准线为,,过抛物线上一点作的垂线,垂足为,与相交于点.若,且的面积为,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某羽绒服卖场为了解气温对营业额的影响,随机记录了该店3月份上旬中某5天的日营业额y(单元:千元)与该地当日最低气温x(单位:∘C)的数据,如表:x258911y1210887(1)求y关于x的回归直线方程;(2)设该地3月份的日最低气温,其中μ近似为样本平均数,近似为样本方差,求参考公式:,计算参考值:..18.(12分)为回馈顾客,新华都购物商场拟通过摸球兑奖的方式对500位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球(球的大小、形状一模一样),球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为40元,其余3个所标的面值均为20元,求顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是30000元,并规定袋中的4个球由标有面值为20元和40元的两种球共同组成,或标有面值为15元和45元的两种球共同组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的4个球的面值给出一个合适的设计,并说明理由.提示:袋中的4个球由标有面值为a元和b元的两种球共同组成,即袋中的4个球所标的面值“既有a元又有b元”.19.(12分)已知函数.(1)当时,求函数的单调区间;(2)是否存在实数a,使函数在上单调递增?若存在,求出a的取值范围;若不存在,请说明理由.20.(12分)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:
0.10
0.05
0.010
0.005
2.706
3.841
6.635
7.879
21.(12分)已知的展开式前两项的二项式系数之和为1.(1)求的值.(2)求出这个展开式中的常数项.22.(10分)如图,在多面体中,四边形是菱形,⊥平面且.(1)求证:平面⊥平面;(2)若设与平面所成夹角为,且,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
①分类变量与的随机变量越大,说明“A与B有关系”的可信度越大②对同取对数,再进行化简,可进行判断③根据线性回归方程,将,代入可求出值【题目详解】对于①,分类变量A与B的随机变量越大,说明“A与B有关系”的可信度越大,正确;
对于②,,两边取对数,可得,
令,可得,.即②正确;
对于③,根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,,,则.故
③正确因此,本题正确答案是:①②③答案选D【题目点拨】二联表中越大,说明“A与B有关系”的可信度越大;将变量转化成一般线性方程时,可根据系数对应关系对号入座进行求解;线性回归方程的求解可根据,代入求出值2、D【解题分析】
先计算出套题中选出套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案.【题目详解】通过题意,可知从这套题中选出套试卷共有种可能,而3套题年份和编号都各不相同共有种可能,于是所求概率为.选D.【题目点拨】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大.3、D【解题分析】
先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果.【题目详解】作出曲线与直线围成的平面图形如下:由解得:或,所以曲线与直线围成的平面图形的面积为.故选D【题目点拨】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.4、D【解题分析】分析:根据对应函数的求导法则得到结果即可.详解:函数,故答案为:D.点睛:这个题目考查了具体函数的求导计算,注意计算的准确性,属于基础题目.5、D【解题分析】
先求出函数的定义域,确定内层函数的单调性,再根据复合函数的单调性得出答案.【题目详解】由题可得,即,所以函数的定义域为,又函数在上单调递减,根据复合函数的单调性可知函数的单调递减区间为,故选D.【题目点拨】本题考查对数函数的单调性和应用、复合函数的单调性、二次函数的性质,体现了转化的数学思想,属于中档题.6、A【解题分析】
通过类比的方法得到直线方程是,代入数据得到答案.【题目详解】所平分的弦所在的直线方程是,通过类比的方法,可求得双曲线的所平分的弦所在的直线方程是代入数据,得到:故答案选A【题目点拨】本题考查了类比推理,意在考查学生的推理能力.7、C【解题分析】分析:直接利用捆绑法求解.详解:把甲和乙捆绑在一起,有种方法,再把六个同学看成5个整体进行排列,有种方法,由乘法分步原理得甲和乙两位同学相邻的排法有种.故答案为:C.点睛:(1)本题主要考查排列组合的应用,意在考查学生对该知识的掌握水平和分析推理能力.(2)遇到相邻问题,常用捆绑法,先把相邻元素捆绑在一起,再进行排列.8、D【解题分析】分析:根据两条直线斜率之积为定值,设出动点P的坐标,即可确定解析式。详解:因为直线,斜率之积为,即,设P()则,化简得所以选D点睛:本题考查了圆锥曲线的简单应用,根据斜率乘积为定值确定动点的轨迹方程,属于简单题。9、A【解题分析】
由的导函数形式可以看出,需要对k进行分类讨论来确定导函数为0时的根.【题目详解】解:∵函数的定义域是∴,∵是函数的唯一一个极值点∴是导函数的唯一根,∴在无变号零点,即在上无变号零点,令,因为,所以在上单调递减,在上单调递增所以的最小值为,所以必须,故选:A.【题目点拨】本题考查由函数的导函数确定极值问题.对参数需要进行讨论.10、A【解题分析】
先根据的单调性确定出最小值从而确定出的值,再由不等式即可得到的范围,根据二次函数零点的分布求解出的取值范围.【题目详解】因为,所以当时,,当时,,所以在上递减,在上递增,所以,所以,又因为,所以,因为对应的,且有零点,(1)当时,或,所以,所以,所以,(2)当时,或,此时,所以,综上可知:,所以.故选:A.【题目点拨】本题考查利用导数判断函数的零点以及根据二次函数的零点分布求解参数范围,属于综合性问题,难度较难.其中处理二次函数的零点分布问题,除了直接分析还可以采用画图象的方法进行辅助分析.11、A【解题分析】分析:直接利用排列组合的公式计算.详解:由题得.故答案为A.点睛:(1)本题主要考查排列组合的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)排列数公式:==(,∈,且).组合数公式:===(∈,,且)12、C【解题分析】
由两角和的正切公式得出,结合平方关系求出,即可得出的值.【题目详解】,即由平方关系得出,解得:故选:C【题目点拨】本题主要考查了两角和的正切公式,平方关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用余弦定理求出,再求△F1PF2的面积.【题目详解】∵|PF1|+|PF2|=4,,又∵∠F1PF2=60°,由余弦定理可得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°12=(|PF1|+|PF2|)2-2|PF1|·|PF2|-|PF1|·|PF2|,∴,∴.【题目点拨】本题主要考查椭圆的定义和余弦定理,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.14、【解题分析】
根据题意,由于题目中给出了较多的边和角,根据题目列出对应的正余弦定理的关系式,能较快解出BD的长度.【题目详解】根据题意,以点A为原点,AC所在直线为x轴建立平面直角坐标系。过点B作垂直AC交AC于点E,则,又因为在中,,所以,,故.【题目点拨】本题主要考查学生对于正余弦定理的掌握,将几何问题转化为坐标系下的问题是解决本题的关键.15、.【解题分析】
计算出二项展开式通项,令的指数为,求出参数的值,再将参数的值代入二项展开式通项可得出项的系数.【题目详解】的展开式通项为,令,得,因此,的展开式中含项的系数为,故答案为:.【题目点拨】本题考查二项式指定项的系数的计算,解题的关键就是利用二项展开式通项进行计算,考查运算求解能力,属于中等题.16、【解题分析】
由题意知可求的坐标.由于轴,,,可得,.利用抛物线的定义可得,代入可取,再利用,即可得出的值.【题目详解】解:如图所示,,,.与轴平行,,,.,解得,代入可取,,解得.故答案为:.【题目点拨】本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出的坐标后,如何根据已知面积列出方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)由题,计算,,进而求出线性回归方程。(2)由题可得,计算的值,从而得出【题目详解】(1)由题意可得,,,∴y关于x的回归直线方程(2)由题意,平均数为,方差为,,,【题目点拨】本题考查线性回归方程与概率问题,属于简单题。18、(1)分布列见解析;期望为50;(2)应该选择面值设计方案“”,即标有面值元和面值元的球各两个【解题分析】
(1)设顾客获得的奖励额为,随机变量的可能取值为,分别求出对应概率,列出分布列并求出期望即可;(2)分析可知期望为60元,讨论两种方案:若选择“”的面值设计,只有“”的面值组合符合期望为60元,求出方差;当球标有的面值为元和元时,面值设计是“”符合期望为60元,求出方差,比较两种情况的方差,即可得出结论.【题目详解】解:(1)设顾客获得的奖励额为,随机变量的可能取值为.,,所以的分布列如下:所以顾客所获的奖励额的期望为(2)根据商场的预算,每个顾客的平均奖励额为元.所以可先寻找使期望为60元的可能方案:当球标有的面值为元和元时,若选择“”的面值设计,因为元是面值之和的最大值,所以期望不可能为;若选择“”的面值设计,因为元是面值之和的最小值,所以期望不可能为.因此可能的面值设计是选择“”,设此方案中顾客所获得奖励额为,则的可能取值为..的分布列如下:所以的期望为的方差为当球标有的面值为元和元时,同理可排除“”、“”的面值设计,所以可能的面值设计是选择“”,设此方案中顾客所获的奖励额为,则的可能取值为..的分布列如下:所以的期望为的方差为因为即两种方案奖励额的期望都符合要求,但面值设计方案“”的奖励额的方差要比面值设计方案“”的方差小,所以应该选择面值设计方案“”,即标有面值元和面值元的球各两个.【题目点拨】本题考查了离散型随机变量的分布列,考查了期望与方差的应用,考查了学生的计算能力,属于中档题.19、(1)单调递增区间为和,单调递减区间为.(2)存在,满足题设.【解题分析】
(1)根据当时直接求导,令与,即可得出单调区间.(2)函数,使函数在上单调递增等价于,等价于,构造函数,利用导数求出的最小值,即可得出的范围.【题目详解】(1)当时,,令,则或,令,则,的单调递增区间为和,单调递减区间为.(2)存在,满足题设.函数.要使函数在上单调递增,,即,令,则当时,在上单调递减,当时,在上单调递增,是的极小值点,也是最小值点,且存在,满足题设.【题目点拨】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,难度较难.20、(1)90;(2)0.75;(3)有的把握认为“该校学生的每周平均体育运动时间与性别有关”.【解题分析】试题分析:(1)由分层抽样性质,得到;(2)由频率分布直方图得;(3)利用2×2列联表求.试题解析:(1)由,所以应收集90位女生的样本数据.(2)由频率发布直方图得,该校学生每周平均体育运动时间超过4小时的概率为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计每周平均体育运动时间不超过4小时453075每周平均体育运动时间超过4小时16560225总计21090300结合列联表可算得有95%的把握认为“该校学生的平均体育运动时间与性别有关”点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21、(1)(2)672【解题分析】试题分析:(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可试题解析:(1)即(2)展开式的通项令且得展开式中的常数项为第7项,即考点:二项式系数的性质22、(1)见解析;(2).【解题分析】
(1)根据已知可得和,由线面垂直判定定理可证平面,再由面面垂直判定定理证得平面⊥平面.(2)解法一:向量法,设,以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系,求得的坐标,运用向量的坐标表示和向量的垂直条件,求得平面和平面的的法向量,再由向量的夹角公式,计算即可得到所求的值.解法二:三垂线法,连接AC交BD于O,连接EO、FO,过点F做FM⊥EC于M,连OM,由已知可以证明FO⊥面AEC,∠FMO即为二面角A-EC-F的平面角,通过菱形的性质、勾股定理和等面积法求得cos∠FMO,得到答案.解法三:射影面积法,连接AC交BD于O,连接EO、FO,根据已知条件计算,,二面角的余弦值cosθ=,即可求得答案.【题目详解】(1)证明:连结四边形是菱形,,⊥平面,平面,,,平面,平面,平面,平面⊥平面.(2)解:解法一:设,四边形是菱形,,、为等边三角形,,是的中点,,⊥平面,,在中有,,,以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系如图所示,则所以,,设平面的法向量为,由得设,解得.设平面的法向量为,由得设,解得.设二面角的为,则结合图可知,二面角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川爱创科技有限公司产品研发部招聘空气净化器产品技术经理等岗位5人笔试历年参考题库附带答案详解
- 2025四川成都传媒集团人力资源服务中心(高级)项目经理岗位招聘3人笔试历年参考题库附带答案详解
- 2025四川广安安农发展集团有限公司下属子公司市场化选聘职业经理人拟录用对象笔试历年参考题库附带答案详解
- 2025北京市自来水集团禹通市政工程有限公司社会招聘35人笔试历年参考题库附带答案详解
- 2025内蒙古宏焱工贸有限责任公司招聘27人笔试历年参考题库附带答案详解
- 2026年茂名职业技术学院高职单招职业适应性考试模拟试题及答案详解
- 2025云南省交通投资建设集团有限公司下属公路建设公司管理人员招聘7人笔试历年参考题库附带答案详解
- 2026年杨凌职业技术学院高职单招职业适应性测试备考试题及答案详解
- 2026年交通物流管理人才面试题库及答案
- 2026年四川体育职业学院高职单招职业适应性测试模拟试题及答案详解
- 2023-2024员工自购保险福利调研报告
- 2023年操作工技能考核考试-活塞式压缩机维修工考试历年重点考核试题含答案
- 燃机电厂电气设计特点
- QC成果范文:提高管道焊接质量
- 《简明地方史读本》期末测试卷附答案
- 部编版九年级语文上册期末复习课件
- 历年复试专业课笔试真题-华电09电力
- 药物临床试验与GCP课件
- 一线作业人员绩效考核管理规定
- 骨关节疾病讲解课件
- SJG 85-2020 边坡工程技术标准-高清现行
评论
0/150
提交评论