




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省宣城二中数学高二第二学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是()A.[1,+∞) B.[,2) C.[1,2) D.[1,)2.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A. B. C. D.3.设随机变量,随机变量,若,则()A. B. C. D.4.在等差数列{an}中,,角α顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(a2,a1+a3),则cos2α=()A. B. C. D.5.已知实数成等比数列,则椭圆的离心率为A. B.2 C.或2 D.或6.已知f(x)为偶函数,且当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时,f(x)=log2x,则等于()A.-+2 B.1C.3 D.+27.一个篮球运动员投篮一次得3分的概率为,得2分的概率为,得0分的概率为0.5(投篮一次得分只能3分、2分、1分或0分),其中、,已知他投篮一次得分的数学期望为1,则的最大值为A. B. C. D.8.在区间[-1,4]内取一个数x,则≥的概率是()A. B. C. D.9.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B.2 C. D.510.函数的最小正周期是()A. B. C. D.11.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为()附:若X∼N(μ,σ2),则PA.1193 B.1359 C.2718 D.341312.已知全集U={x∈Z|0<x<10},集合A={1,2,3,4},B={x|x=2a,a∈A},则(∁UA)∩B=()A.{6,8} B.{2,4} C.{2,6,8} D.{4,8}二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量,则___________14.设函数,若,则的取值范围是_____.15.在的展开式中的系数为__________.16.设,若,则实数________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设是数列{}的前项和,,且.(I)求数列{}的通项公式;(Ⅱ)设,求.18.(12分)如图,在矩形中,为CD的中点,将沿AE折起到的位置,使得平面平面.(1)证明:平面平面;(2)求平面与平面所成二面角的正弦值.19.(12分)已知关于x的不等式(其中).(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围.20.(12分)已知,.(Ⅰ)求函数f(x)的极值;(Ⅱ)对一切的时,恒成立,求实数a的取值范围.21.(12分)已知椭圆经过点,且离心率.求椭圆的方程;设、分别是椭圆的上顶点与右顶点,点是椭圆在第三象限内的一点,直线、分别交轴、轴于点、,求四边形的面积.22.(10分)某小组有7个同学,其中4个同学从来没有参加过天文研究性学习活动,3个同学曾经参加过天文研究性学习活动.(1)现从该小组中随机选2个同学参加天文研究性学习活动,求恰好选到1个曾经参加过天文研究性学习活动的同学的概率;(2)若从该小组随机选2个同学参加天文研究性学习活动,则活动结束后,该小组有参加过天文研究性学习活动的同学个数是一个随机变量,求随机变量的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
利用导数研究函数的极值性,令极值点属于已知区间即可.【题目详解】所以时递减,时,递增,是极值点,因为函数在其定义域内的一个子区间(k-1,k+1)内不是单调函数,所以,即,故选:D.【题目点拨】本题主要考查利用导数研究函数的极值,其中考查了利用导数研究函数的单调性,属于中档题.2、B【解题分析】
先求出女生甲被选中的情况下的基本事件总数,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,结合条件概率的计算方法,可得.【题目详解】女生甲被选中的情况下,基本事件总数,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,则在女生甲被选中的情况下,男生乙也被选中的概率为.故选B.【题目点拨】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3、A【解题分析】试题分析:∵随机变量,∴,解得.∴,∴,故选C.考点:1.二项分布;2.n次独立重复试验方差.4、A【解题分析】
利用等差数列的知识可求的值,然后利用的公式可求.【题目详解】由等差数列{an}的性质可知,所以,所以.故选:A.【题目点拨】本题主要考查等差数列的性质和三角函数求值,注意齐次式的转化,侧重考查数学运算的核心素养.5、A【解题分析】
由1,m,9构成一个等比数列,得到m=±1.当m=1时,圆锥曲线是椭圆;当m=﹣1时,圆锥曲线是双曲线,(舍)由此即可求出离心率.【题目详解】∵1,m,9构成一个等比数列,∴m2=1×9,则m=±1.当m=1时,圆锥曲线+y2=1是椭圆,它的离心率是=;当m=﹣1时,圆锥曲线+y2=1是双曲线,故舍去,则离心率为.故选A.【题目点拨】本题考查圆锥曲线的离心率的求法,解题时要注意等比数列的性质的合理运用,注意分类讨论思想的灵活运用.6、D【解题分析】
函数f(x)为偶函数,可得f(﹣)=f()再将其代入f(x)=2sinx,进行求解,再根据x∈[2,+∞)时f(x)=log2x,求出f(4),从而进行求解;【题目详解】∵函数f(x)为偶函数,∴f(﹣)=f(),∵当x∈[0,2)时f(x)=2sinx,∴f(x)=2sin=2×=;∵当x∈[2,+∞)时f(x)=log2x,∴f(4)=log24=2,∴=+2,故选:D.【题目点拨】此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,属于基础题7、D【解题分析】
设这个篮球运动员得1分的概率为c,由题设知
,解得2a+b=0.5,再由均值定理能求出ab的最大值.【题目详解】设这个篮球运动员得1分的概率为c,
∵这个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,得0分的概率为0.5,
投篮一次得分只能3分、2分、1分或0分,他投篮一次得分的数学期望为1,
∴
,
解得2a+b=0.5,
∵a、b∈(0,1),
∴
=
=
,
∴ab
,
当且仅当2a=b=
时,ab取最大值
.
故选D.
点评:本题考查离散型随机变量的分布列和数学期的应用,是基础题.解题时要认真审题,仔细解答,注意均值定理的灵活运用.8、D【解题分析】
先解不等式,确定解集的范围,然后根据几何概型中的长度模型计算概率.【题目详解】因为,所以,解得,所以.【题目点拨】几何概型中长度模型(区间长度)的概率计算:.9、C【解题分析】
设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【题目详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选C.【题目点拨】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.10、D【解题分析】
根据正切型函数的周期公式可求出函数的最小正周期.【题目详解】由题意可知,函数的最小正周期,故选D.【题目点拨】本题考查正切型函数周期的求解,解题的关键在于利用周期公式进行计算,考查计算能力,属于基础题.11、B【解题分析】由正态分布的性质可得,图中阴影部分的面积S=0.9545-0.6827则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.12、A【解题分析】
先化简已知条件,再求.【题目详解】由题得,因为,,故答案为A【题目点拨】本题主要考查集合的化简,考查集合的补集和交集运算,意在考查学生对这些知识的掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用正态密度曲线的对称性得出,可得出答案。【题目详解】由于随机变量,正态密度曲线的对称轴为直线,所以,,故答案为:。【题目点拨】本题考查正态分布概率的计算,解这类问题的关键就是要充分利用正态密度曲线的对称轴,利用对称性解题,考查计算能力,属于基础题。14、【解题分析】分析:,即,再分类讨论求得的范围,综合可得结论.详解:函数函数,
由,可得,其中,
下面对进行分类讨论,
①时,,可以解得
②时,,可以解得综上,即答案为.点睛:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.15、45【解题分析】分析:根据展开式的通项公式,求出展开式中的系数,即可得出的展开式中的系数是多少.详解:展开式的通项公式为:,令,得的系数为,且无项,的展开式中的系数为45.故答案为:45.点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.16、【解题分析】
将左右两边的函数分别求导,取代入导函数得到答案.【题目详解】两边分别求导:取故答案为【题目点拨】本题考查了二项式定理的计算,对两边求导是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)an=2n.(Ⅱ)【解题分析】
(Ⅰ)利用数列递推关系即可得出.(Ⅱ)利用裂项求和即可求解.【题目详解】∵4Sn=an(an+2),①当n=1时得,即a1=2,当n≥2时有4Sn﹣1=an﹣1(an﹣1+2)②由①﹣②得,即2(an+an﹣1)=(an+an﹣1)(an﹣an﹣1),又∵an>0,∴an﹣an﹣1=2,∴an=2+2(n﹣1)=2n.(Ⅱ)∵,∴Tn=b1+b2+…+bn【题目点拨】本题考查了数列递推关系、裂项求和、数列的单调性,考查了推理能力与计算能力,属于中档题.18、(1)证明见解析;(2).【解题分析】
(1)由题可得,即,由平面平面,根据面面垂直的性质可得平面,从而证明平面平面;(2)结合(1),如图建立空间直角坐标系,分别求出平面与平面的法向量,由二面角的余弦公式求出余弦值,从而可得到平面与平面所成二面角的正弦值.【题目详解】(1)证明:设,在矩形中,由为的中点,易求得:,所以.所以.又因为平面平面,平面平面,所以平面.又平面,所以平面平面.(2)设,取中点,连接﹐由,得,所以.又平面平面,平面平面,故平面.如图,以为坐标原点,分别以,的方向为轴,轴正方向建立空间直角坐标系,依题意得:.,由(1)知平面,故可取平面的法向量为,设平面的法向量为,则,即不妨取,得,设平面与平面所成二面角为θ,,则,所以平面与平面所成二面角的正弦值为.【题目点拨】本题考查立体几何中面面垂直的证明以及二面角的正弦值的求法,考查利用空间向量解决问题的能力,属于中档题.19、(Ⅰ)(Ⅱ)【解题分析】
本试题主要是考查了绝对值不等式的求解,以及分段函数的表示,和图像以及最值的求解综合运用.(1)利用已知条件,先分析的解集就是绝对值不等式的求解,利用三段论法得到.(2)不等式有解,的最小值为,则,从而得到实数a的取值范围.(Ⅰ)当时,,时,,得时,,得时,,此时不存在∴不等式的解集为(Ⅱ)∵设故,即的最小值为所以有解,则解得,即的取值范围是20、(Ⅰ)f(x)的极小值是(Ⅱ)【解题分析】
(Ⅰ)对求导,并判断其单调性即可得出极值。(Ⅱ)化简成,转化成判断的最值。【题目详解】解:(Ⅰ),,,令,解得:,令,解得:,∴在递减,在递增,∴的极小值是;(Ⅱ)∵,由题意原不等式等价于在上恒成立,即,可得,设,则,令,得,(舍),当时,,当时,,∴当时,h(x)取得最大值,,∴,即a的取值范围是.【题目点拨】本题主要考查了函数极值的判断以及函数最值的问题,在解决此类问题时通常需要求二次导数或者构造新的函数再次求导。本题属于难题。21、;.【解题分析】
运用椭圆的离心率公式和满足椭圆方程,解方程可得,的值,即可得到所求椭圆方程;求得,的坐标,设,求得直线,的方程,可得,的坐标,进而计算四边形的面积.【题目详解】由椭圆的离心率为得,,.又椭圆C经过点,,解得,椭圆C的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年作物科学与技术专业技能考核试卷及答案
- 2025年智能财务管理师考试试题及答案
- 2025年职业健康管理师考试试题及答案
- 2025年投资分析师考试试卷及答案
- 2025年网络数据分析师考试题及答案
- 2025年国际贸易专业考生模拟考试试卷及答案
- 2025年非营利组织管理与运营考试试题及答案
- 2025年金融学理论与实务测试试题及答案
- 2025年教育心理学综合考试试题及答案
- 2025年景观设计与生态评估考试试题及答案
- GB/T 21739-2008家用电梯制造与安装规范
- GB 21670-2008乘用车制动系统技术要求及试验方法
- GA/T 1275-2015石油储罐火灾扑救行动指南
- 家务服务员理论考试试题题库及答案
- 交通安全培训课件-道路交通事故十大典型案例-P
- 投标报名登记表格式
- DB4211T12-2022医疗废物暂存间卫生管理规范
- 第二讲公文语言及结构(1语言)分析课件
- 氯氧铋光催化剂的晶体结构
- 低压电气装置的设计安装和检验第三版
- 国际商务管理超星尔雅满分答案
评论
0/150
提交评论