2024届山东省青岛市黄岛区数学高二下期末达标检测试题含解析_第1页
2024届山东省青岛市黄岛区数学高二下期末达标检测试题含解析_第2页
2024届山东省青岛市黄岛区数学高二下期末达标检测试题含解析_第3页
2024届山东省青岛市黄岛区数学高二下期末达标检测试题含解析_第4页
2024届山东省青岛市黄岛区数学高二下期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛市黄岛区数学高二下期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A.2 B.4 C. D.2.用反证法证明命题“设a,b为实数,则方程至多有一个实根”时,则下列假设中正确的是()A.方程没有实根 B.方程至多有一个实根C.方程恰好有两个实数根 D.方程至多有两个实根3.由曲线,围成的封闭图形的面积为()A. B. C. D.4.已知某批零件的长度误差(单位)服从正态分布,若,,现从中随机取一件,其长度误差落在区间内的概率()A.0.0456 B.0.1359 C.0.2718 D.0.31745.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则()A. B. C. D.6.若是互不相同的空间直线,是不重合的平面,则下列命题中真命题是()A.若则B.若则C.若,,则D.若,,则7.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏8.在我国南北朝时期,数学家祖暅在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.其意思是,用一组平行平面截两个几何体,若在任意等高处的截面面积都对应相等,则两个几何体的体积必然相等.根据祖暅原理,“两几何体A、B的体积不相等”是“A、B在等高处的截面面积不恒相等”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要9.已知椭圆与双曲线有相同的焦点,点是曲线与的一个公共点,,分别是和的离心率,若,则的最小值为()A. B.4 C. D.910.某居民小区有两个相互独立的安全防范系统和,系统和系统在任意时刻发生故障的概率分别为和,若在任意时刻恰有一个系统不发生故障的概率为,则()A. B. C. D.11.已知函数,则y=f(x)的图象大致为()A. B.C. D.12.函数的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数()为纯虚数,则____.14.一根木棍长为4,若将其任意锯为两段,则锯成的两段木棍的长度有一段大于3的概率为______.15.若,,,且的最小值是___.16.已知三棱锥的所有顶点都在球的表面上,平面,,,,,则球的表面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线的极坐标方程为,直线,直线.以极点为原点,极轴为轴正半轴建立平面直角坐标系.(1)求直线的直角坐标方程以及曲线的参数方程;(2)已知直线与曲线交于两点,直线与曲线交于两点,求的周长.18.(12分)已知复数在复平面内对应的点位于第二象限,且满足.(1)求复数;(2)设复数满足:为纯虚数,,求的值.19.(12分)已知在平面直角坐标系中,直线的参数方程是(t是参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)判断直线与曲线C的位置关系;(2)设点为曲线C上任意一点,求的取值范围.20.(12分)在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.21.(12分)已知函数,其中为常数.(1)若,求函数的极值;(2)若函数在上单调递增,求实数的取值范围.22.(10分)已知定义在R上的函数fx(1)求b的值,并判断函数fx(2)若对任意的t∈R,不等式ft2-2t

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由已知求出三棱柱外接球的半径,得到,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【题目详解】解:堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选:D.【题目点拨】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.2、C【解题分析】

由二次方程实根的分布,可设方程恰好有两个实根.【题目详解】证明“设a,b为实数,则方程至多有一个实根”,由反证法的步骤可得第一步假设方程恰好有两个实根,故选:C.【题目点拨】本题考查反证法的运用,注意解题步骤,以及假设及否定的叙述,考查推理能力,属于基础题.3、C【解题分析】围成的封闭图形的面积为,选C.4、B【解题分析】

,由此可得答案.【题目详解】解:由题意有,故选:B.【题目点拨】本题主要考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.5、B【解题分析】分析:由题意可知,,然后利用二项式定理进行展开,使之与进行比较,可得结果详解:由题可知:而则故选点睛:本题主要考查了二次项系数的性质,根据题目意思,将转化为是本题关键,然后运用二项式定理展开求出结果6、C【解题分析】

对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑面面垂直的判定定理;对于D,考虑空间两条直线的位置关系及平行公理.【题目详解】选项A中,除平行外,还有异面的位置关系,则A不正确;选项B中,与的位置关系有相交、平行、在内三种,则B不正确;选项C中,由,设经过的平面与相交,交线为,则,又,故,又,所以,则C正确;选项D中,与的位置关系还有相交和异面,则D不正确;故选C.【题目点拨】该题考查的是有关立体几何问题,涉及到的知识点有空间直线与平面的位置关系,面面平行的性质,线面垂直的判定,面面垂直的判定和性质,属于简单题目.7、B【解题分析】

设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.8、A【解题分析】

先阅读题意,再由原命题与其逆否命题的真假及充分必要条件可得解【题目详解】由已知有”在任意等高处的截面面积都对应相等”是“两个几何体的体积必然相等“的充分条件不必要条件,结合原命题与其逆否命题的真假可得:“两几何体A、B的体积不相等”是“A、B在等高处的截面面积不恒相等”的充分不必要条件,故选:A.【题目点拨】本题考查了阅读能力、原命题与其逆否命题的真假及充分必要条件,属中档题。9、A【解题分析】

题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a12+a22=2c2,由此能求出4e12+e22的最小值.【题目详解】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2a2,①由椭圆定义|PF1|+|PF2|=2a1,②又∵PF1⊥PF2,∴|PF1|2+|PF2|2=4c2,③①2+②2,得|PF1|2+|PF2|2=4a12+4a22,④将④代入③,得a12+a22=2c2,∴4e12+e22==++≥+2=.故选A.【题目点拨】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.10、B【解题分析】试题分析:记“系统发生故障、系统发生故障”分别为事件、,“任意时刻恰有一个系统不发生故障”为事件,则,解得,故选B.考点:对立事件与独立事件的概率.11、A【解题分析】

利用特殊值判断函数的图象即可.【题目详解】令,则,再取,则,显然,故排除选项B、C;再取时,,又当时,,故排除选项D.故选:A.【题目点拨】本题考查函数的图象的判断,特殊值法比利用函数的导函数判断单调性与极值方法简洁,属于基础题.12、A【解题分析】,如图所示可知,,因此最小值为2,故选C.点睛:解决本题的关键是根据零点分段去掉绝对值,将函数表达式写成分段函数的形式,并画出图像求出最小值.恒成立问题的解决方法(1)f(x)<m恒成立,须有[f(x)]max<m;(2)f(x)>m恒成立,须有[f(x)]min>m;(3)不等式的解集为R,即不等式恒成立;(4)不等式的解集为∅,即不等式无解.二、填空题:本题共4小题,每小题5分,共20分。13、0【解题分析】试题分析:由题意得,复数为纯虚数,则,解得或,当时,(舍去),所以.考点:复数的概念.14、【解题分析】

试验的全部区域长度为4,基本事件的区域长度为2,代入几何概型概率公式即可得结果.【题目详解】设“长为4的木棍”对应区间,“锯成的两段木棍的长度有一段大于3”为事件,则满足的区间为或,根据几何概率的计算公式可得,.故答案为.【题目点拨】本题主要考查几何概型等基础知识,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.15、9【解题分析】

根据基本不等式的性质,结合乘“1”法求出代数式的最小值即可.【题目详解】∵,,,,当且仅当时“=”成立,故答案为9.【题目点拨】本题考查了基本不等式的性质,考查转化思想,属于基础题.16、【解题分析】分析:根据三棱锥的结构特征,求得三棱锥外接球半径,由球表面积公式即可求得表面积。详解:由,根据同角三角函数关系式得,解得所以,因为,,由余弦定理代入得所以△ABC为等腰三角形,且,由正弦定理得△ABC外接圆半径R为,解得设△ABC外心为,,过作则在中在中解得所以外接球面积为点睛:本题综合考查了空间几何体外接球半径的求法,通过建立空间模型,利用勾股定理求得半径;结合球的表面积求值,对空间想象能力要求高,综合性强,属于难题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;;(2).【解题分析】

(1)直接利用转换关系式,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用(1)的结论,建立方程组,进一步利用余弦定理求出结果.【题目详解】(1)解:直线,所以:直线的直角坐标方程为,直线.所以:直线的直角坐标方程为曲线的直角坐标方程为,所以:曲线的参数方程为(为参数);(2)解:联立,得到,同理,又,所以根据余弦定理可得,所以周长.【题目点拨】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,方程组的应用和余弦定理的应用,主要考查学生的运算能力和转化能力,属于基础题型.18、(1);(2).【解题分析】分析:(1)解一元二次方程,得到,根据在复平面内对应的点位于第二象限,即可判断的取值。(2)根据复数的乘法运算、纯虚数的概念、模的定义,联立方程求得x、y的值,进而求得的值。详解:(1)因为,所以,又复数对应的点位于第二象限,所以;(2)因为,又为纯虚数,所以,有得,解得,或,;所以.点睛:本题考查了复数相等、纯虚数等概念和复数的混合运算,对基本的运算原理要清晰,属于基础题。19、(1)相离;(2).【解题分析】试题分析:本题考查参数方程与普通方程、极坐标方程与直角坐标方程的转化,圆的参数方程的应用以及直线和圆的位置关系的判断.(1)把直线、曲线方程化为直角坐标方程后根据圆心到直线的距离和半径的关系判断即可.(2)利用圆的参数方程,根据点到直线的距离公式和三角函数的知识求解.试题解析:(1)由,消去得直线的普通方程为:由,得.∴,即.化为标准方程得:.∴圆心坐标为,半径为1,∵圆心到直线的距离,∴直线与曲线相离.(2)由为曲线上任意一点,可设,则,∵,∴∴的取值范围是.20、(1),82;(2)见解析【解题分析】

(1)由频率分布直方图面积和为1,可求得.取每个矩形的中点与概率乘积和求得平均数.(2)由二项分布求得分布列与数学期望.【题目详解】1由题意:,估计这200名选手的成绩平均数为.2由题意知,XB(3,1/3),X可能取值为0,1,2,3,,所以X的分布列为

X的数学期望为

.【题目点拨】本题主要考查随机变量的分布列和期望,考查独立性检验,意在考查离散型随机变量的分布列期望和独立性检验等基础知识的掌握能力,考查学生基本的运算推理能力.21、(1)见解析;(2).【解题分析】分析:求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用函数的单调性可求出函数的极值;(2)在上单调递增等价于在上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论