




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津开发区第一中学2024届高二数学第二学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数y=x2㏑x的单调递减区间为A.(1,1] B.(0,1] C.[1,+∞) D.(0,+∞)2.已知函数f(x)=lnx+ln(a-x)的图象关于直线A.0 B.1 C.lna D.3.在长方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.4.设等差数列的前项和为.若,,则A.9 B.8 C.7 D.25.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:有心脏病无心脏病秃发20300不秃发5450根据表中数据得,由断定秃发与患有心脏病有关,那么这种判断出错的可能性为()附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.0.1 B.0.05C.0.01 D.0.0016.若,,,则()A. B.C. D.7.函数的定义域是()A. B. C. D.8.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有()A.210种 B.420种 C.630种 D.840种9.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.10.在区域内任意取一点,则的概率是()A.0 B. C. D.11.将3名教师,5名学生分成3个小组,分别安排到甲、乙、丙三地参加社会实践活动,每地至少去1名教师和1名学生,则不同的安排方法总数为()A.1800 B.1440 C.300 D.90012.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班A.8种 B.10种 C.12种 D.14种二、填空题:本题共4小题,每小题5分,共20分。13.已知两直线的方向向量分别为,,若两直线平行,则________.14.外接圆的半径为1,圆心为O,且,,则______.15.已知经停某站的高铁列车有100个车次,随机从中选取了40个车次进行统计,统计结果为:10个车次的正点率为0.97,20个车次的正点率为0.98,10个车次的正点率为0.99,则经停该站的所有高铁列车正点率的标准差的点估计值为______(精确到0.001).16.设,若不等式对任意实数恒成立,则取值集合是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E为PB的中点.(1)求证:AE//平面PDC;(2)若BC=CD=PD,求直线AC与平面PBC所成角的余弦值.18.(12分)在中,己知(1)求的值;(2)求的值.19.(12分)用函数单调性的定义证明:函数在是减函数.20.(12分)新高考方案的考试科目简称“”,“3”是指统考科目语数外,“1”指在首选科目“物理、历史”中任选1门,“2”指在再选科目“化学、生物、政治和地理”中任选2门组成每位同学的6门高考科目.假设学生在选科中,选修每门首选科目的机会均等,选择每门再选科目的机会相等.(Ⅰ)求某同学选修“物理、化学和生物”的概率;(Ⅱ)若选科完毕后的某次“会考”中,甲同学通过首选科目的概率是,通过每门再选科目的概率都是,且各门课程通过与否相互独立.用表示该同学所选的3门课程在这次“会考”中通过的门数,求随机变量的概率分布和数学期望.21.(12分)如果球、正方体与等边圆柱(底面直径与母线相等)的体积相等,求它们的表面积的大小关系.22.(10分)已知函数.(1)若函数在其定义域内单调递增,求实数的最大值;(2)若存在正实数对,使得当时,能成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】对函数求导,得(x>0),令解得,因此函数的单调减区间为,故选B考点定位:本小题考查导数问题,意在考查考生利用导数求函数单调区间,注意函数本身隐含的定义域2、A【解题分析】
利用对称列方程解得a,从而求出f(1)。【题目详解】由题意得x1+xf所以f(x)=lnx+【题目点拨】本题主要考查了函数对称轴的问题,即在函数上任意两点x1,x2关于直线3、D【解题分析】
取CC1的中点F,连结DF,A1F,EF,推导出四边形BCEF是平行四边形,从而异面直线AE与A1D所成角即为相交直线DF与A1D所成角,由此能求出异面直线AE与A1D所成角的余弦值.【题目详解】取的中点.连接.因为为棱的中点,所以,所以四边形为平行四边形.所以.故异面直线与所成的角即为相交直线与所成的角.因为,所以.所以.即为直角三角形,从而.故选D【题目点拨】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.4、C【解题分析】
利用等差数列的通项公式及前项和公式,求得和的值,即可求出.【题目详解】由,,,解得,,则,故选.【题目点拨】本题主要考查等差数列的通项公式及前项和公式的应用。5、D【解题分析】
根据观测值K2,对照临界值得出结论.【题目详解】由题意,,根据附表可得判断秃发与患有心脏病有关出错的可能性为.故选D.【题目点拨】本题考查了独立性检验的应用问题,理解临界值表格是关键,是基础题.6、C【解题分析】
直接由微积分基本定理计算出可得.【题目详解】因为,,,所以,故选:C.【题目点拨】本题考查微积分基本定理,掌握基本初等函数的积分公式是解题关键.7、D【解题分析】
根据求具体函数的基本原则:分母不为零、偶次根式被开方数非负、对数中真数为正数列不等式解出的取值范围,即为函数的定义域.【题目详解】由题意可得,即,解得,因此,函数的定义域为,故选D.【题目点拨】本题考查具体函数的定义域的求解,求解原则如下:(1)分式中分母不为零;(2)偶次根式中被开方数非负;(3)对数中真数大于零,底数大于零且不为;(4)正切函数中,;(5)求定义域只能在原函数解析式中求,不能对解析式变形.8、B【解题分析】依题意可得,3位实习教师中可能是一男两女或两男一女.若是一男两女,则有种选派方案,若是两男一女,则有种选派方案.所以总共有种不同选派方案,故选B9、C【解题分析】分析:△ABC中设AB=c,BC=a,AC=b,由sinB=cosA•sinC结合三角形的内角和及和角的正弦公式化简可求cosC=0即C=90°,再由,S△ABC=6可得bccosA=9,可求得c=5,b=3,a=4,考虑建立以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系,由P为线段AB上的一点,则存在实数λ使得=(3λ,4﹣4λ)(0≤λ≤1),设则,,由=(x,0)+(0,y)=(x,y)可得x=3λ,y=4﹣4λ则4x+3y=12而,利用基本不等式求解最小值.详解:△ABC中设AB=c,BC=a,AC=b∵sinB=cosA•sinC,∴sin(A+C)=sinCcosA,即sinAcosC+sinCcosA=sinCcosA,∴sinAcosC=0,∵sinA≠0,∴cosC=0C=90°∵,S△ABC=6∴bccosA=9,∴,根据直角三角形可得sinA=,cosA=,bc=15∴c=5,b=3,a=4以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系可得C(0,0)A(3,0)B(0,4)P为线段AB上的一点,则存在实数λ使得=(3λ,4﹣4λ)(0≤λ≤1)设,则,∴=(x,0)+(0,y)=(x,y)∴x=3λ,y=4﹣4λ则4x+3y=12=故所求的最小值为故选C.点睛:本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解把已知所给的是一个单位向量,从而可用x,y表示,建立x,y与λ的关系,解决本题的第二个关键点在于由x=3λ,y=4﹣4λ发现4x+3y=12为定值,从而考虑利用基本不等式求解最小值10、C【解题分析】
求得区域的面积,x2+y2<1表示圆心在原点,半径为1的圆,由圆的面积公式可得其在正方形OABC的内部的面积,由几何概型的计算公式,可得答案.【题目详解】根据题意,设O(0,0)、A(1,0)、B(1,1)、C(0,1),表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y2<1表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为,由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是;故选C.【题目点拨】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.11、D【解题分析】
将三个教师全排列安排到三地,再利用分组、分配方法安排学生,可求出答案.【题目详解】先将3名教师安排到甲、乙、丙三地有种分法,然后安排5名学生,将5名学生可分为1,1,3三组,也可分为2,2,1三组,则安排到三地有种方法;根据分步乘法原理,可知不同的安排方法总数为种.故选D.【题目点拨】本题考查了分步乘法原理的应用,考查了分配问题,考查了计算能力,属于中档题.12、B【解题分析】
根据表格进行逻辑推理即可得到结果.【题目详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【题目点拨】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据题意可得出,从而得出m1﹣4=0,解出m即可.【题目详解】∵;∴m1﹣4=0;∴m=±1.故答案为±1.【题目点拨】考查直线的方向向量的概念,以及平行向量的坐标关系.14、3【解题分析】
利用向量的运算法则将已知等式化简得到,得到BC为直径,故为直角三角形,求出三边长可得的值,利用两个向量的数量积的定义求出的值.【题目详解】,.,B,C共线,BC为圆的直径,.,故.则,【题目点拨】本题主要考查两个向量的数量积的定义,两个向量垂直的充要条件、圆的直径对的圆周角为直角,求出为直角三角形及三边长,是解题的关键.15、【解题分析】
根据平均数的公式,求出平均数,再根据标准差公式求出标准差即可.【题目详解】由题意可知:所有高铁列车平均正点率为:.所以经停该站的所有高铁列车正点率的标准差的点估计值为:故答案为:【题目点拨】本题考查了平均数和标准差的运算公式,考查了应用数学知识解决实际问题的能力.16、【解题分析】
将不等式转化为,分别在、、、的情况下讨论得到的最大值,从而可得;分别在、、的情况去绝对值得到不等式,解不等式求得结果.【题目详解】对任意实数恒成立等价于:①当时,②当时,③当时,④当时,综上可知:,即当时,,解得:当时,,无解当时,,解得:的取值集合为:本题正确结果;【题目点拨】本题考查绝对值不等式中的恒成立问题,关键是能够通过分类讨论的思想求得最值,从而将问题转化为绝对值不等式的求解,再利用分类讨论的思想解绝对值不等式即可得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】
(1)取的中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面.(2)推导出,由,得,再推导出,,从而平面,,,,进而平面,连结,,则就是直线与平面所成角,由此能求出直线与平面所成角的余弦值.【题目详解】解:(1)证明:取的中点,连结、,是的中点,,且,,,,且,四边形是平行四边形,,又平面,平面.(2)解:,是等腰三角形,,又,,平面,平面,,又,平面,平面,,,又,平面,连结,,则就是直线与平面所成角,设,在中,解得,,,在中,解得,在中,,直线与平面所成角的余弦值为.【题目点拨】本题考查线面平行的证明,考查线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18、(1);(2)【解题分析】
(1)通过,可计算出C角正弦及余弦值,于是通过诱导公式可得答案;(2)通过,可得,再利用可得答案.【题目详解】(1)在中,由于,故,解得,所以;(2)由(1)可知,而,所以,所以.【题目点拨】本题主要考查同角三角函数的关系,诱导公式的运用,意在考查学生的转化能力,计算能力及分析能力,难度不大.19、证明过程见解析.【解题分析】
按照单调性的定义进行证明,先设是上任意两个实数,则,然后用差比的方法,结合,比较出,这样就证明出函数在是减函数.【题目详解】设是上任意两个实数,则,,,所以有,因此函数在是减函数.【题目点拨】本题考查了用定义证明函数单调性,用差比的方法比较出的大小关系是解题的关键,一般在差比比较过程中,往往会用到因式分解、配方法、通分法等方法.20、(Ⅰ);(Ⅱ)详见解析.【解题分析】
(Ⅰ)显然各类别中,一共有种组合,而选修物理、化学和生物只有一种可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自行车轮胎性能测试与选型考核试卷
- 节庆用品制作工艺考核试卷
- 能源回收系统施工考核试卷
- 玩具设计中的安全性测试与评估考核试卷
- 药品代购物流安全补充条款
- 智能仓储货架安装与仓储设备维护服务合同
- 知识产权转让与知识产权运营管理合同
- 版权运营内容审核补充协议
- 电商仓储物流安全监管及应急预案合同
- 跨国集团中国区供应链总监任职聘用协议书
- 中班语言《什么东西弯又弯》课件
- 2024年民政局离婚协议书样板
- XX医院抗菌药物临床应用监督管理机制+预警机制
- 临湘事业单位统一招聘考试真题
- 2024年全国执业兽医考试真题及答案解析
- 2024年湖南省长沙市中考地理试卷真题(含答案解析)
- 《中国健康成年人身体活动能量消耗参考值》(编制说明)
- 潮健身let's dance智慧树知到期末考试答案章节答案2024年广西师范大学
- 2《归去来兮辞并序》公开课一等奖创新教学设计统编版高中语文选择性必修下册
- 法理斗争1全文
- 医疗美容诊所规章制度上墙
评论
0/150
提交评论