2024届云南省宣威市第八中学数学高二第二学期期末联考模拟试题含解析_第1页
2024届云南省宣威市第八中学数学高二第二学期期末联考模拟试题含解析_第2页
2024届云南省宣威市第八中学数学高二第二学期期末联考模拟试题含解析_第3页
2024届云南省宣威市第八中学数学高二第二学期期末联考模拟试题含解析_第4页
2024届云南省宣威市第八中学数学高二第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省宣威市第八中学数学高二第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.四大名著是中国文学史上的经典作品,是世界宝贵的文化遗产.在某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著《红楼梦》、《三国演义》、《水浒传》、《西游记》(每种名著至少有5本),若每人只借阅一本名著,则不同的借阅方案种数为()A. B. C. D.2.用数学归纳法证明(,)时,第一步应验证()A. B. C. D.3.某学习小组有名男生和名女生,现从该小组中先后随机抽取两名同学进行成果展示,则在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率为()A. B. C. D.4.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.245.在二项式的展开式中,各项系数之和为,二项式系数之和为,若,则()A. B. C. D.6.若,则等于()A.2 B.0 C.-2 D.-47.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为,体积为,则球的表面积为()A. B. C. D.8.函数在上单调递减,且为奇函数,若,则满足的的取值范围是()A. B. C. D.9.执行如图所示的程序框图,则程序输出的结果为()A. B. C. D.10.已知两个不同的平面α,β和两条不同的直线a,b满足a⊄α,b⊄β,则“a∥b”是“α∥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.把18个人平均分成两组,每组任意指定正副组长各1人,则甲被指定为正组长的概率为()A. B. C. D.12.已知函数,若有两个极值点,,且,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.正项等差数列的前n项和为,已知,且,则__________.14.已知函数为的极值点,则关于的不等式的解集为________.15.设实数满足约束条件,则目标函数的最大值为________.16.某种产品每箱装6个,其中有4个合格,2个不合格,现质检人员从中随机抽取2个进行检测,则检测出至少有一个不合格产品的概率是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二次函数满足,且.(1)求的解析式;(2)设函数,当时,求的最小值;(3)设函数,若对任意,总存在,使得成立,求m的取值范围.18.(12分)某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(×月×日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:汽车行驶路线在不堵车的情况下到达城市乙所需时间(天)在堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路1142公路2231(1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX;(2)若,,选择哪条公路运送啤酒厂家获得的毛收人更多?(注:毛收入=销售商支付给厂家的费用-运费).19.(12分)老师要从7道数学题中随机抽取3道考查学生,规定至少能做出2道即合格,某同学只会做其中的5道题.(I)求该同学合格的概率;(II)用X表示抽到的3道题中会做的题目数量,求X分布列及其期望.20.(12分)(1)集合,或,对于任意,定义,对任意,定义,记为集合的元素个数,求的值;(2)在等差数列和等比数列中,,,是否存在正整数,使得数列的所有项都在数列中,若存在,求出所有的,若不存在,说明理由;(3)已知当时,有,根据此信息,若对任意,都有,求的值.21.(12分)已知数列,…的前项和为.(1)计算的值,根据计算结果,猜想的表达式;(2)用数学归纳法证明(1)中猜想的表达式.22.(10分)已知.(1)求及;(2)试比较与的大小,并用数学归纳法证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

通过分析每人有4种借阅可能,即可得到答案.【题目详解】对于甲来说,有4种借阅可能,同理每人都有4种借阅可能,根据乘法原理,故共有种可能,答案为A.【题目点拨】本题主要考查乘法分步原理,难度不大.2、B【解题分析】

直接利用数学归纳法写出时左边的表达式即可.【题目详解】解:用数学归纳法证明,时,第一步应验证时是否成立,即不等式为:;故选:.【题目点拨】在数学归纳法中,第一步是论证时结论是否成立,此时一定要分析不等式左边的项,不能多写也不能少写,否则会引起答案的错误.3、C【解题分析】

设事件A表示“抽到个同学是男生”,事件B表示“抽到的第个同学也是男生”,则,,由此利用条件概率计算公式能求出在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率.【题目详解】设事件A表示“抽到个同学是男生”,事件B表示“抽到的第个同学也是男生”,则,,则在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率.故选:C【题目点拨】本题考查了条件概率的求法、解题的关键是理解题干,并能分析出问题,属于基础题.4、D【解题分析】试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有种考点:排列、组合及简单计数问题5、A【解题分析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得,最后根据解出详解:因为各项系数之和为,二项式系数之和为,因为,所以,选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.6、D【解题分析】

先求导,算出,然后即可求出【题目详解】因为,所以所以,得所以,所以故选:D【题目点拨】本题考查的是导数的计算,较简单.7、C【解题分析】

正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的表面积.【题目详解】由题意可知,正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为,设正三棱柱的高为,由,得,∴外接球的半径为,∴外接球的表面积为:.故选C.【题目点拨】本题主要考查了正三棱柱的外接球的表面积的求法,找出球的球心是解题的关键,考查空间想象能力与计算能力,是中档题.8、C【解题分析】

先由函数是奇函数求出,化原不等式为,再由函数的单调性,即可得出结果.【题目详解】因为为奇函数,若,则,所以不等式可化为,又在上单调递减,所以,解得.故选C【题目点拨】本题主要考查由函数的单调性与奇偶性解不等式,熟记函数基本性质即可,属于常考题型.9、C【解题分析】依次运行如图给出的程序,可得;,所以输出的的值构成周期为4的数列.因此当时,.故程序输出的结果为.选C.10、D【解题分析】

分别判断充分性和必要性得到答案.【题目详解】如图所示:既不充分也不必要条件.故答案选D【题目点拨】本题考查了充分必要条件,举出反例可以简化运算.11、B【解题分析】

把18个人平均分成2组,再从每组里任意指定正、副组长各1人,即从9人中选一个正组长,甲被选定为正组长的概率,与组里每个人被选中的概率相等.【题目详解】由题意知,把18个人平均分成2组,再从每组里任意指定正、副组长各1人,即从9个人中选一个正组长,∴甲被选定为正组长的概率是.故选B.【题目点拨】本题考查了等可能事件的概率应用问题,是基础题目.12、C【解题分析】

由可得,根据极值点可知有两根,等价于与交于两点,利用导数可求得的最大值,同时根据的大小关系构造方程可求得临界状态时的取值,结合单调性可确定的取值范围.【题目详解】,,令可得:.有两个极值点,有两根令,则,当时,;当时,,在上单调递增,在上单调递减,,令,则,解得:,此时.有两根等价于与交于两点,,即的取值范围为.故选:.【题目点拨】本题考查根据函数极值点个数及大小关系求解参数范围的问题,关键是明确极值点和函数导数之间的关系,将问题转化为直线与曲线交点问题的求解.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】

由等差数列的通项公式求出公差,再利用等差数列前项和的公式,即可求出的值【题目详解】在等差数列中,所以,解得或(舍去).设的公差为,故,即.因为,所以,故,或(舍去).【题目点拨】本题考查等差数列通项公式与前项和的公式,属于基础题。14、【解题分析】

首先利用为的极值点求出参数,然后利用符号法则解分式不等式即可。【题目详解】,由题意,,经检验,当时,为的极值点.所以.或,的解集为.【题目点拨】本题主要考查导数在函数中的应用,以及分式不等式的解法,意在考查学生的数学运算能力。15、2【解题分析】分析:由题意,作出约束条件所表示的平面区域,结合图象得到目标函数过点时,取得最大值,即可求解.详解:由题意,作出约束条件所表示的平面区域,如图所示,目标函数,即,当直线在上的截距最大值,此时取得最大值,结合图象可得,当直线过点时,目标函数取得最大值,由,解得,所以目标函数的最大值为.点睛:本题主要考查简单线性规划求解目标函数的最值问题.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求,其关键是准确作出可行域,理解目标函数的意义是解答的关键,着重考查了数形结合法思想的应用.16、【解题分析】

首先明确试验发生包含的事件是从6个产品中抽2个,共有种结果,满足条件的事件是检测出至少有一个不合格产品,共有种结果,根据古典概型概率公式得到结果.【题目详解】由题意知本题是一个等可能事件的概率,因为试验发生包含的事件是6个产品中抽取2个,共有种结果,满足条件的事件是检测出至少有一个不合格产品,共有种结果,所以检测出至少有一个不合格产品的概率是,故答案是:.【题目点拨】该题考查的是有关等可能事件的概率的求解问题,在解题的过程中,注意对试验所包含的基本事件数以及满足条件的基本事件数,以及概率公式,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解题分析】

(1)根据二次函数,则可设,再根据题中所给的条件列出对应的等式对比得出所求的系数即可.(2)根据(1)中所求的求得,再分析对称轴与区间的位置关系进行分类讨论求解的最小值即可.(3)根据题意可知需求与在区间上的最小值.再根据对数函数与二次函数的单调性求解最小值即可.【题目详解】(1)设.①∵,∴,又∵,∴,可得,∴解得即.(2)由题意知,,,对称轴为.①当,即时,函数h(x)在上单调递增,即;②当,即时,函数h(x)在上单调递减,在上单调递增,即.综上,(3)由题意可知,∵函数在上单调递增,故最小值为,函数在上单调递减,故最小值为,∴,解得.【题目点拨】本题主要考查利用待定系数法求解二次函数解析式的方法,二次函数对称轴与区间关系求解最值的问题,以及恒成立和能成立的问题等.属于中等题型.18、(1)分布列见解析,;(2)选择公路2运送啤酒有可能让啤酒厂获得的毛收入更多.【解题分析】

(1)若汽车走公路1,不堵车时啤酒厂获得的毛收人(万元),堵车时啤酒厂获得的毛收入(万元),然后列出分布列和求出(2)当时,由(1)知(万元),然后求出,比较二者的大小即可得出结论.【题目详解】解:(1)若汽车走公路1,不堵车时啤酒厂获得的毛收人(万元),堵车时啤酒厂获得的毛收入(万元),所以汽车走公路1时啤酒厂获得的毛收入X的分布列为4034∴.(2)当时,由(1)知(万元),当时,设汽车走公路2时啤酒厂获得的毛收入为Y,则不堵车时啤酒厂获得的毛收入9(万元),堵车时啤酒厂获得的毛收入(万元),∴汽车走公路2时啤酒厂获得的毛收入Y的分布列为3937∴(万元),由得选择公路2运送啤酒有可能让啤酒厂获得的毛收入更多.【题目点拨】本题考查的是随机变量的分布列和期望,较简单,属于基础题;由于文字太多,解答本题的关键是读懂题意.19、(1).(2)分布列见解析;.【解题分析】分析:(1)设“该同学成绩合格”为事件;(2)可能取的不同值为1,2,3,时,时,时.详解:(1)设“该同学成绩合格”为事件(2)解:可能取的不同值为1,2,3当时当时=当时=的分布列为123点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.20、(1),;(2)为正偶数;(3);【解题分析】

(1)由题意得:集合表示方程解的集合,由于或,即可得到集合的元素个数;利用倒序相加法及,即可得到答案;(2)假设存在,对分奇数和偶数两种情况进行讨论;(3)利用类比推理和分类计数原理可得的值.【题目详解】(1)由题意得:集合表示方程解的集合,由于或,所以方程中有个,个,从而可得到解的情况共有个,所以.令,所以,所以,所以,即.(2)当取偶数时,中所有项都是中的项.由题意:均在数列中,当时,,说明数列的第项是数列中的第项.当取奇数时,因为不是整数,所以数列的所有项都不在数列中.综上所述:为正偶数.(3)当时,有①当时,②又对任意,都有③所以即为的系数,可取①中、②中的1;或①中、②中的;或①中、②中的;或①中的、②中的;所以.【题目点拨】本题第(1)问考查对集合新定义的理解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论