2024届四省名校数学高二下期末经典模拟试题含解析_第1页
2024届四省名校数学高二下期末经典模拟试题含解析_第2页
2024届四省名校数学高二下期末经典模拟试题含解析_第3页
2024届四省名校数学高二下期末经典模拟试题含解析_第4页
2024届四省名校数学高二下期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四省名校数学高二下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若离散型随机变量的概率分布列如下表所示,则的值为()1A. B. C.或 D.2.已知二项式的展开式中二项式系数之和为64,则该展开式中常数项为A.-20 B.-15 C.15 D.203.如图过抛物线焦点的直线依次交抛物线与圆于A、B、C、D,则A.4 B.2 C.1 D.4.已知定义在上的可导函数的导函数为,对任意实数均有成立,且是奇函数,不等式的解集是()A. B. C. D.5.已知函数且,则实数的取值范围是()A. B. C. D.6.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.27.现有下面三个命题常数数列既是等差数列也是等比数列;;直线与曲线相切.下列命题中为假命题的是()A. B.C. D.8.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则()A., B.,C., D.,9.函数的部分图象如图所示,则函数的解析式为().A. B.C. D.10.函数的部分图象大致为()A. B.C. D.11.命题“对任意实数,关于的不等式恒成立”为真命题的一个必要不充分条件是A. B. C. D.12.在中,角A,B,C所对的边分别是a,b,c,若角A,C,B成等差数列,且,则的形状为()A.直角三角形 B.等腰非等边三角形C.等边三角形 D.钝角三角形二、填空题:本题共4小题,每小题5分,共20分。13.若,则“”是“”的____条件.(从“充分不必要”、“必要不充分”“充要”、“既不充分又不必要”中选填)14.已知曲线在点处的切线为,则点的坐标为__________.15.若实数,满足线性约束条件,则的最大值为_____________;16.已知函数若存在互不相等实数有则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,曲线在处的切线方程为.(1)求实数的值;(2)求函数在的最值.18.(12分)在中,内角,,所对的边分别为,,.已知,,.(Ⅰ)求的值;(Ⅱ)求的值.19.(12分)已知函数.(1)当时,若方程的有1个实根,求的值;(2)当时,若在上为增函数,求实数的取值范围.20.(12分)红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数和平均温度有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.平均温度21232527293133平均产卵数/个7112124661153251.92.43.03.24.24.75.8(1)根据散点图判断,与(其中为自然对数的底数)哪一个更适宜作为平均产卵数关于平均温度的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出关于的回归方程.(计算结果精确到0.01)(2)根据以往统计,该地每年平均温度达到以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到以上的概率为.记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率.附:回归方程中,,.参考数据52151771371781.33.621.(12分)各项均为正数的数列的首项,前项和为,且.(1)求的通项公式:(2)若数列满足,求的前项和.22.(10分)设函数,.(1)求函数的单调递增区间;(2)若函数与在区间内恰有两个交点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由离散型随机变量ξ的概率分布表知:.解得.故选:A.2、C【解题分析】

利用二项式系数之和为64解得,再利用二项式定理得到常数项.【题目详解】二项式的展开式中二项式系数之和为64当时,系数为15故答案选C【题目点拨】本题考查了二项式定理,先计算出是解题的关键,意在考查学生的计算能力.3、C【解题分析】

根据抛物线的几何意义转化,,再通过直线过焦点可知,即可得到答案.【题目详解】抛物线焦点为,,,,于是,故选C.【题目点拨】本题主要考查抛物线的几何意义,直线与抛物线的关系,意在考查学生的转化能力,计算能力及分析能力.4、A【解题分析】

构造函数,利用导数和已知条件判断出在上递增,由此求解出不等式的解集.【题目详解】要求解的不等式等价于,令,,所以在上为增函数,又因为是奇函数,故,所以,所以所求不等式等价于,所以解集为,故选A.【题目点拨】本小题主要考查构造函数法解不等式,考查导数的运算,考查利用导数判断函数的单调性,考查函数的奇偶性,考查化归与转化的数学思想方法,属于中档题.5、A【解题分析】分析:先确定函数奇偶性与单调性,再利用奇偶性与单调性解不等式.详解:因为,所以,为偶函数,因为当时,单调递增,所以等价于,即,或,选A.点睛:解函数不等式:首先根据函数的性质把不等式转化为同一单调区间上的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.6、B【解题分析】

求出函数的导数,利用切线方程通过f′(0),求解即可;【题目详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【题目点拨】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.7、C【解题分析】分析:首先确定的真假,然后确定符合命题的真假即可.详解:考查所给命题的真假:对于,当常数列为时,该数列不是等比数列,命题是假命题;对于,当时,,该命题为真命题;对于,由可得,令可得,则函数斜率为的切线的切点坐标为,即,切线方程为,即,据此可知,直线与曲线不相切,该命题为假命题.考查所给的命题:A.为真命题;B.为真命题;C.为假命题;D.为真命题;本题选择C选项.点睛:本题主要考查命题真假的判断,符合问题问题,且或非的运算法则等知识,意在考查学生的转化能力和计算求解能力.8、B【解题分析】

分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【题目详解】可能的取值为;可能的取值为,,,,故,.,,故,,故,.故选B.【题目点拨】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.9、D【解题分析】

根据最值计算,利用周期计算,当时取得最大值2,计算,得到函数解析式.【题目详解】由题意可知,因为:当时取得最大值2,所以:,所以:,解得:,因为:,所以:可得,可得函数的解析式:.故选D.【题目点拨】本题主要考查了正弦型函数的图象与性质,其中解答中根据函数的图象求得函数的解析式,熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题10、C【解题分析】

根据函数的奇偶性与正负值排除判定即可.【题目详解】函数,故函数是奇函数,图像关于原点对称,排除B,D,当x>0且x→0,f(x)>0,排除A,故选:C.【题目点拨】本题主要考查了函数图像的判定,属于基础题型.11、B【解题分析】

根据题意可知,利用参数分离的方法求出使命题“对任意实数,关于的不等式恒成立”为真命题的的取值范围,的取值范围构成的集合应为正确选项的真子集,从而推出正确结果.【题目详解】命题“对任意实数,关于的不等式恒成立”为真命题根据选项满足是的必要不充分条件只有,故答案选B.【题目点拨】本题主要考查了简单的不等式恒成立问题以及求一个命题的必要不充分条件.12、C【解题分析】

由已知利用等差数列的性质可得,由正弦定理可得,根据余弦定理可求,即可判断三角形的形状.【题目详解】解:由题意可知,,因为,所以,则,所以,所以,故为等边三角形.故选:.【题目点拨】本题主要考查了等差数列的性质,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、充分不必要【解题分析】

直接利用充要条件的判断方法判断即可.【题目详解】“”则“”,但是“”可得“或”,所以“”是“”的充分不必要条件.【题目点拨】本题考查充要条件的判断,属于简单题.14、.【解题分析】分析:设切点坐标为,求得,利用且可得结果.详解:设切点坐标为,由得,,,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.15、8【解题分析】分析:先作可行域,再根据目标函数所表示直线,平移可得最大值取法.详解:作可行域,则直线过点A(2,1)时取最大值8.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16、【解题分析】

不妨设,根据二次函数对称性求得的值.根据绝对值的定义求得的关系式,将转化为来表示,根据的取值范围,求得的取值范围.【题目详解】不妨设,画出函数的图像如下图所示.二次函数的对称轴为,所以.不妨设,则由得,得,结合图像可知,解得,所以,由于在上为减函数,故.【题目点拨】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),【解题分析】

(1),可得到,即可求出的值;(2)由可判断的单调性,从而可求出函数在的最值.【题目详解】(1),则,.(2)的定义域为,,令,则,当时,,单调递减;当时,,单调递增,,∵,,且,∴.【题目点拨】本题考查了导数的几何意义,考查了函数的单调性的应用,考查了学生的计算能力,属于基础题.18、(Ⅰ);(Ⅱ)【解题分析】

(Ⅰ)由于,计算出再通过正弦定理即得答案;(Ⅱ)可先求出,然后利用和差公式即可求得答案.【题目详解】(Ⅰ)解:,且,∴,又,∴,由正弦定理,得,∴的值为.(Ⅱ)由题意可知,,∴,.【题目点拨】本题主要考查三角恒等变换,正弦定理的综合应用,意在考查学生的分析能力,计算能力,难度不大.19、(1)或;(2).【解题分析】

(1)易得,考查的图象与直线的位置关系即可;(2)在上为增函数,即在上恒成立,参变分离求最值即可.【题目详解】(1)∴当时,当时,∴在递增,在递减,又,∵有1个实根,∴或(2)当时,,∴又在上为增函数,∴,又∴,而即∴故的取值范围是.【题目点拨】本题考查函数的零点与单调性问题,考查函数与方程的联系,考查不等式恒成立,考查转化能力与计算能力.20、(1);(2)当时,.【解题分析】

(1)根据散点图判断更适宜作为关于的回归方程类型;对两边取自然对数,求出回归方程,再化为y关于x的回归方程;(2)由对其求对数,利用导数判断函数单调性,求出函数的最值以及对应的值.【题目详解】解:(1)由散点图可以判断,适宜作为卵数关于温度的回归方程类型.对两边取自然对数,得,由数据得,,所以,,所以关于的线性回归方程为,关于的回归方程为.(2)由得,因为,令得,解得;所以在上单调递减,在上单调递增,所以有唯一的极大值为,也是最大值;所以当时,.【题目点拨】本题考查了线性回归方程的求法与应用问题,也考查了概率的计算与应用问题,属于中档题.21、(1);(2)【解题分析】

(1)已知,可得,则,并验证时,是否满足等式,从而知数列是等差数列,求其通项即可。(2)因为=,是由等差数列和等比数列的对应项的积组成的数列,用错位相减法即可求和。【题目详解】(1)因为,①所以当时,②①-②得:,因为的各项均为正数,所以,且,所以由①知,,即,又因为,所以故,所以数列是首项为,公差为的等差数列(2)由(1)得,所以,③④③-④得,当且时,,;当时,由③得综上,数列的前项和【题目点拨】本题主要考查了等差数列,等比数列以及数列的求和。利用等比数列求和公式时,当公比是字母时,要注意讨论公式的范围。属于中档题。22、(1);(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论