2024届福建省泉州市晋江四校高二数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届福建省泉州市晋江四校高二数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届福建省泉州市晋江四校高二数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届福建省泉州市晋江四校高二数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届福建省泉州市晋江四校高二数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省泉州市晋江四校高二数学第二学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出下列三个命题:①“若,则”为假命题;②若为真命题,则,均为真命题;③命题,则.其中正确的个数是()A.0 B.1 C.2 D.32.由曲线,围成的封闭图形的面积为()A. B. C. D.3.设在定义在上的偶函数,且,若在区间单调递减,则()A.在区间单调递减 B.在区间单调递增C.在区间单调递减 D.在区间单调递增4.幂函数的图象过点,那么的值为()A. B.64 C. D.5.在△ABC中,内角A,B,C的对边分别为a,b,c,且a=1,B=45°,S△ABC=2,则△ABC的外接圆的直径为()A.5 B. C. D.6.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种 B.5种 C.6种 D.7种7.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A. B. C. D.8.已知向量,,若∥,则A. B. C. D.9.对33000分解质因数得,则的正偶数因数的个数是()A.48 B.72 C.64 D.9610.若函数f(x)的导数为f′(x)=-sinx,则函数图像在点(4,f(4))处的切线的倾斜角为()A.90°B.0°C.锐角D.钝角11.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于A. B. C.3 D.512.一工厂生产某种产品的生产量(单位:吨)与利润(单位:万元)的部分数据如表所示:从所得的散点图分析可知,与线性相关,且回归方程为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若满足约束条件则的最大值为__________.14.已知函数为偶函数,对任意满足,当时,.若函数至少有个零点,则实数的取值范围是____________.15.对于自然数方幂和(,),,,求和方法如下:23﹣13=3+3+1,33﹣23=3×22+3×2+1,……(n+1)3﹣n3=3n2+3n+1,将上面各式左右两边分别,就会有(n+1)3﹣13=++n,解得=n(n+1)(2n+1),类比以上过程可以求得,A,B,C,D,E,FR且与n无关,则A+F的值为_______.16.先后掷骰子(骰子的六个面上分别标有、、、、、个点)两次,落在水平桌面后,记正面朝上的点数分别为,,设事件为“为偶数”,事件为“,中有偶数且”,则概率等于_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知平行四边形中,,,,是边上的点,且,若与交于点,建立如图所示的直角坐标系.(1)求点的坐标;(2)求.18.(12分)设为虚数单位,为正整数,(1)证明:;(2),利用(1)的结论计算.19.(12分)已知椭圆的长轴长为,且椭圆与圆的公共弦长为(1)求椭圆的方程.(2)过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.20.(12分)已知函数.(1)当时,求函数的单调区间和极值;(2)若在上是单调函数,求实数的取值范围.21.(12分)设实部为正数的复数z,满足|z|=,且复数(1+3i)z在复平面内对应的点在第一、三象限的角平分线上.(I)求复数z(II)若复数+m2(1+i)-2i十2m-5为纯虚数,求实数m的值.22.(10分)(学年安徽省六安市第一中学高三上学期第二次月考)已知函数f(x)=log4(1)求k的值;(2)若函数y=fx的图象与直线y=12x+a没有交点,(3)若函数hx=4fx+12x+m⋅2x-1,x∈0,log23

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:①若,则且,所以①正确;②若为真命题,则,应至少有一个是真命题,所以②错;③正确.考点:1.四种命题;2.命题的否定.2、C【解题分析】围成的封闭图形的面积为,选C.3、D【解题分析】

根据题设条件得到函数是以2为周期的周期函数,同时关于对称的偶函数,根据对称性和周期性,即可求解.【题目详解】由函数满足,所以是周期为2的周期函数,由函数在区间单调递减,可得单调递减,所以B不正确;由函数在定义在上的偶函数,在区间单调递减,可得在区间单调递增,所以A不正确;又由函数在定义在上的偶函数,则,即,所以函数的图象关于对称,可得在区间单调递增,在在区间单调递增,所以C不正确,D正确,故选D.【题目点拨】本题主要考查了函数的单调性与对称性的应用,以及函数的周期性的判定,着重考查了推理与运算能力,属于基础题.4、A【解题分析】

设幂函数的解析式为∵幂函数的图象过点.选A5、C【解题分析】分析:由三角形面积公式可得,再由余弦定理可得,最后结合正弦定理即可得结果.详解:根据三角形面积公式得,,得,则,即,,故正确答案为C.点睛:此题主要考三角形面积公式的应用,以及余弦定理、正弦定理在计算三角形外接圆半径的应用等有关方面的知识与技能,属于中低档题型,也是常考考点.此类题的题型一般有:1.已知两边和任一边,求其他两边和一角,此时三角形形状唯一;2.已知两边和其中一边的对角,求另一边的对角,此时三角形形状不一定唯一.6、A【解题分析】试题分析:分类:三堆中“最多”的一堆为5个,其他两堆总和为5,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为4个,其他两堆总和为6,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为3个,那是不可能的.考点:本题主要考查分类计数原理的应用.点评:本解法从“最多”的一堆分情况考虑开始,分别计算不同分法,然后求和.用列举法也可以,形象、直观易懂.7、B【解题分析】

先求出女生甲被选中的情况下的基本事件总数,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,结合条件概率的计算方法,可得.【题目详解】女生甲被选中的情况下,基本事件总数,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,则在女生甲被选中的情况下,男生乙也被选中的概率为.故选B.【题目点拨】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.8、D【解题分析】

根据∥得到,解方程即得x的值.【题目详解】根据∥得到.故答案为D【题目点拨】(1)本题主要考查向量平行的坐标表示,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)如果=,=,则||的充要条件是.9、A【解题分析】分析:分的因数由若干个、若干个、若干个、若干个相乘得到,利用分步计数乘法原理可得所有因数个数,减去不含的因数个数即可得结果.详解:的因数由若干个(共有四种情况),若干个(共有两种情况),若干个(共有四种情况),若干个(共有两种情况),由分步计数乘法原理可得的因数共有,不含的共有,正偶数因数的个数有个,即的正偶数因数的个数是,故选A.点睛:本题主要考查分步计数原理合的应用,属于中档题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.10、C【解题分析】,函数f(x)的图像在点(4,f(4))处的切线的倾斜角为锐角。11、A【解题分析】

因为抛物线的焦点是,所以双曲线的半焦距,,,所以一条渐近线方程为,即,,故选A.【点考点定位】本题主要考查双曲线、抛物线的标准方程、几何性质、点和直线的位置关系,考查推理论证能力、逻辑思维能力、计算求解能力、数形结合思想、转化化归思想12、C【解题分析】

根据表格中的数据计算出和,再将点的坐标代入回归直线方程可求出实数的值.【题目详解】由题意可得,,由于回归直线过样本中心点,则有,解得,故选:C.【题目点拨】本题考查利用回归直线方程求原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、6【解题分析】分析:首先绘制出可行域,然后结合目标函数的几何意义整理计算即可求得最终结果.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A坐标为:,据此可知目标函数的最大值为:.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.14、【解题分析】

根据偶函数性质及解析式满足的条件,可知的对称轴和周期,并由时的解析式,画出函数图像;根据导数的几何意义,求得时的解析式,即可求得的临界值,进而确定的取值范围.【题目详解】函数至少有个零点,由可得函数为偶函数,对任意满足,则函数图像关于对称,函数为周期的周期函数,当时,,则的函数图像如下图所示:由图像可知,根据函数关于轴对称可知,若在时至少有两个零点,则满足至少有个零点,即在时至少有两个交点;当与相切时,满足有两个交点;则,设切点为,则,解方程可得,由导数的几何意义可知,所以满足条件的的取值范围为.故答案为:.【题目点拨】本题考查了函数零点的应用,方程与函数的综合应用,根据导数求函数的交点情况,数形结合法求参数的取值范围,属于难题.15、.【解题分析】分析:先根据推导过程确定A,F取法,即得A+F的值.详解:因为,,所以,所以,,所以.点睛:本题考查运用类比方法求解问题,考查归纳观察能力.16、【解题分析】试题分析:根据题意,若事件A为“x+y为偶数”发生,则x、y两个数均为奇数或均为偶数.共有2×3×3=18个基本事件,∴事件A的概率为=.而A、B同时发生,基本事件有“2+4”、“2+6”、“4+2”、“4+6”、“6+2”、“6+4”,一共有6个基本事件,因此事件A、B同时发生的概率为=因此,在事件A发生的情况下,B发生的概率为P(B|A)=考点:条件概率与独立事件三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)根据题意写出各点坐标,利用求得点的坐标。(2)根据求得点的坐标,再计算、,求出数量积。【题目详解】建立如图所示的坐标系,则,,,,由,所以,设,则,所以,解得,所以(2)根据题意可知,所以,所以,从而,。【题目点拨】本题考查了平面向量的坐标运算以及数量积,属于基础题。18、(1)证明见解析.(2).【解题分析】分析:(1)利用数学归纳法先证明,先证明当时成立,假设当时,命题成立,只需证明当时,命题也成立,证明过程注意三角函数和差公式的应用;(2)由(1)结论得,结合诱导公式与特殊角的三角函数可得结果.详解:(1)1°当时,左边,右边,所以命题成立2°假设当时,命题成立,即,则当时,所以,当时,命题也成立综上所述,(为正整数)成立(2)由(1)结论得点睛:本题主要考查复数的运算、诱导公式、特殊角的三角函数、归纳推理的应用以及数学归纳法证明,属于中档题.利用数学归纳法证明结论的步骤是:(1)验证时结论成立;(2)假设时结论正确,证明时结论正确(证明过程一定要用假设结论);(3)得出结论.19、(1)(2)【解题分析】试题分析:(1)由长轴长可得值,公共弦长恰为圆直径,可知椭圆经过点,利用待定系数法可得椭圆方程;(2)可令直线的解析式为,设,的中点为,将直线方程与椭圆方程联立,消去,利用根与系数的关系可得,由等腰三角形中,可得,得出中.由此可得点的横坐标的范围.试题解析:(1)由题意可得,所以.由椭圆与圆:的公共弦长为,恰为圆的直径,可得椭圆经过点,所以,解得.所以椭圆的方程为.(2)直线的解析式为,设,的中点为.假设存在点,使得为以为底边的等腰三角形,则.由得,故,所以,.因为,所以,即,所以.当时,,所以;当时,,所以.综上所述,在轴上存在满足题目条件的点,且点的横坐标的取值范围为.点睛:本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系,基本不等式,及韦达定理的应用.解析几何大题的第一问一般都是确定曲线的方程,常见的有求参数确定方程和求轨迹确定方程,第二问一般为直线与椭圆的位置关系,解决此类问题一般需要充分利用数形结合的思想转化给出的条件,可将几何条件转化为代数关系,从而建立方程或者不等式来解决.20、(1)函数的单调递减区间是,单调递增区间是,极小值是(2)【解题分析】

易知,函数的定义域为当时,当x变化时,和的值的变化情况如下表:x10递减极小值递增由上表可知,函数的单调递减区间是,单调递增区间是,极小值是由,得又函数为上单调函数,若函数为上的单调增函数,则在上恒成立,即不等式在上恒成立.也即在上恒成立,而在上的最大值为,所以若函数为上的单调减函数,根据,在上,没有最小值所以在上是不可能恒成立的综上,a的取值范围为【题目点拨】本题是一道导数的应用题,着重考查利用导数研究函数的单调性与极值,函数恒成立等知识点,属于中档题.21、(1).(2)【解题分析】

分析:(1)设,先根据复数乘法得,再根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论