




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京西城8中数学高二下期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现有甲、乙等5名同学排成一排照相,则甲、乙两名同学相邻,且甲不站两端的站法有()A.24种 B.36种 C.40种 D.48种2.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖.在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学中有且只有两位预测结果是对的,则获得一等奖的团队是()A.甲 B.乙 C.丙 D.丁3.已知的展开式中各项系数和为2,则其展开式中含项的系数是()A.-40 B.-20 C.20 D.404.设集合,分别从集合A和B中随机抽取数x和y,确定平面上的一个点,记“点满足条件”为事件C,则()A. B. C. D.5.已知集合,,则()A. B. C. D.6.不等式无实数解,则的取值范围是()A. B.C. D.7.在的展开式中,系数的绝对值最大的项为()A. B. C. D.8.在极坐标系中,设圆与直线交于两点,则以线段为直径的圆的极坐标方程为()A. B.C. D.9.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ等于A.0.2B.0.8C.0.196D.0.80410.下面有五个命题:①函数y=sin4x-cos4x的最小正周期是π;②终边在y轴上的角的集合是{α|α=kπA.①③ B.①④ C.②③ D.③④11.设椭圆的左、右焦点分别为,其焦距为,点在椭圆的内部,点是椭圆上的动点,且恒成立,则椭圆离心率的取值范围是()A.B.C.D.12.已知O是的两条对角线的交点.若,其中,则()A.-2 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足x+1≤y≤2x,则2y−x的最小值是__________.14.设函数是定义在上的周期为2的偶函数,当,时,,则____.15.右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为_____________.16.已知向量满足,,的夹角为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂拟生产并销售某电子产品m万件(生产量与销售量相等),为扩大影响进行销售,促销费用x(万元)满足(其中,为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,此工厂所获利润最大?18.(12分)设,且.(1)求的值;(2)求在区间上的最大值.19.(12分)已知锐角的三个内角的对边分别为,且.(1)求角;(2)若,求的取值范围.20.(12分)在直角坐标系中,直线的参数方程为(为参数).再以原点为极点,以正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位.在该极坐标系中圆的方程为.(1)求圆的直角坐标方程;(2)设圆与直线交于点、,若点的坐标为,求的值.21.(12分)已知等差数列满足,.(Ⅰ)求的通项公式;(Ⅱ)设是等比数列的前项和,若,,求.22.(10分)某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以,,,,,分组的频率分布直方图如图所示.根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布估计该市居民月平均用电量介于度之间的概率;利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
对5个位置进行编号1,2,3,4,5,则甲只能排在第2,3,4位置,再考虑乙,再考虑其它同学.【题目详解】对5个位置进行编号1,2,3,4,5,∵甲不站两端,∴甲只能排在第2,3,4位置,(1)当甲排在第2位置时,乙只能排第1或第3共2种排法,其他3位同学有A3∴共有2×A(2)当甲排在第3位置时,乙只能排第2或第4共2种排法,其他3位同学有A3∴共有2×A(3)当甲排在第4位置时,乙只能排第3或第5共2种排法,其他3位同学有A3∴共有2×A∴排法种数N=12+12+12=36种.【题目点拨】分类与分步计数原理,在确定分类标准时,一般是从特殊元素出发,同时应注意元素的顺序问题.2、D【解题分析】1.若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;2.若乙获得一等奖,则只有小张的预测正确,与题意不符;3.若丙获得一等奖,则四人的预测都错误,与题意不符;4.若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意,故选D.【思路点睛】本题主要考查演绎推理的定义与应用以及反证法的应用,属于中档题.本题中,若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;若乙获得一等奖,则只有小张的预测正确,与题意不符;若丙获得一等奖,则四人的预测都错误,与题意不符;若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意.3、D【解题分析】
由题意先求得a=﹣1,再把(2x+a)5按照二项式定理展开,即可得含x3项的系数.【题目详解】令x=1,可得(x+1)(2x+a)5的展开式中各项系数和为2•(2+a)5=2,∴a=﹣1.二项式(x+1)(2x+a)5=(x+1)(2x﹣1)5=(x+1)(32x5﹣80x4+80x3﹣40x2+10x﹣1),故展开式中含x3项的系数是﹣40+80=40故选D.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4、A【解题分析】
求出从集合A和B中随机各取一个数x,y的基本事件总数,和满足点P(x,y)满足条件x2+y2≤16的基本事件个数,代入古典概型概率计算公式,可得答案.【题目详解】∵集合A=B={1,2,3,4,5,6},分别从集合A和B中随机各取一个数x,y,确定平面上的一个点P(x,y),共有6×6=36种不同情况,其中P(x,y)满足条件x2+y2≤16的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8个,∴C的概率P(C),故选A.【题目点拨】本题考查的知识点是古典概型概率计算公式,考查了列举法计算基本事件的个数,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.5、B【解题分析】
先求出集合A,B,由此能求出A∩B.【题目详解】因为所以.故选:B【题目点拨】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.6、C【解题分析】
利用绝对值不等式的性质,因此得出的范围,再根据无实数解得出的范围。【题目详解】解:由绝对值不等式的性质可得,,即.因为无实数解所以,故选C。【题目点拨】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。7、D【解题分析】
根据最大的系数绝对值大于等于其前一个系数绝对值;同时大于等于其后一个系数绝对值;列出不等式求出系数绝对值最大的项;【题目详解】二项式展开式为:设系数绝对值最大的项是第项,可得可得,解得在的展开式中,系数的绝对值最大的项为:故选:D.【题目点拨】本题考查二项展开式中绝对值系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.8、A【解题分析】试题分析:以极点为坐标原点,极轴为轴的正半轴,建立直角坐标系,则由题意,得圆的直角坐标方程,直线的直角坐标方程.由,解得或,所以,从而以为直径的圆的直角坐标方程为,即.将其化为极坐标方程为:,即故选A.考点:简单曲线的极坐标方程.9、C【解题分析】试题分析:由题意可知发病的牛的头数为ξ~B(10,0.02),所以D(ξ)=10×0.02×(1-0.02)=0.196;故选C.考点:二项分布的期望与方差.10、B【解题分析】
①先进行化简,再利用求周期的公式即可判断出是否正确;②对k分奇数、偶数讨论即可;③令h(x)=x﹣sinx,利用导数研究其单调性即可;④利用三角函数的平移变换化简求解即可.【题目详解】①函数y=sin4x﹣cos4x=(sin2x+cos2x)(sin2x﹣cos2x)=﹣cos2x,∴最小正周期T=2π2=π,∴函数y=sin4x﹣cos4x的最小正周期是π,故①②当k=2n(n为偶数)时,a=2nπ2=nπ,表示的是终边在x轴上的角,故②③令h(x)=x﹣sinx,则h′(x)=1﹣cosx≥0,∴函数h(x)在实数集R上单调递增,故函数y=sinx与y=x最多只能一个交点,因此③不正确;④把函数y=3sin(2x+π3)的图象向右平移π6得到y=3sin(2x﹣π3综上可知:只有①④正确.故选B.【题目点拨】本题综合考查了三角函数的周期性、单调性、三角函数取值及终边相同的角,利用诱导公式进行化简和利用导数判断单调性是解题的关键.11、B【解题分析】由题设可得,即,解之得,即;结合图形可得,即,应选答案B。点睛:解答本题的关键是建构不等式(组),求解时先依据题设条件,将点代入椭圆方程得到,即,解之得,从而求得,然后再借助与椭圆的几何性质,建立了不等式,进而使得问题获解。12、A【解题分析】
由向量的线性运算,可得,即得解.【题目详解】由于,故所以故选:A【题目点拨】本题考查了平面向量的线性运算,考查了学生数形结合,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】
分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,平移直线,由图可知直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.14、【解题分析】
依题意能得到f()=f(),代入解析式即可求解.【题目详解】依题意得f(﹣x)=f(x)且f(x+2)=f(x),∴f()=f()=f(2)=f()2,故答案为:.【题目点拨】本题考查了函数的奇偶性、周期性的应用,属于基础题.15、9.【解题分析】分析:计算正方形二维码的面积,利用面积比等于对应的点数比求得黑色部分的面积.详解:边长为4的正方形二维码面积为,设图中黑色部分的面积为S,则,解得.据此估计黑色部分的面积为9.故答案为:9.点睛:本题考查了用模拟实验的方法估计概率的应用计算问题,是基础题.16、【解题分析】
先计算,再由展开计算即可得解.【题目详解】由,,的夹角为,得.所以.故答案为:.【题目点拨】本题主要考查了利用向量的数量积计算向量的模长,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,利润最大值为17万元,当时,最大利润万元【解题分析】
(1)利润为单价乘以产品件数减去促销费用再减去投入成本;(2)可有对勾函数的的单调性求得最大值.【题目详解】(1),将代入(2)令,在单减,单增∴当时,利润最大值为17万元当时,最大利润万元【题目点拨】本题考查函数的应用,解题关键是确定关系式求得函数解析式,然后通过函数解析式求得最值等.18、(1);(2)2【解题分析】
(1)直接由求得的值;
(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域.【题目详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是.【题目点拨】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域.19、(1);(2).【解题分析】试题分析:(1)运用三角形的余弦定理,可得sinC,可得角C;
(2)运用正弦定理和两角差的正余弦公式,结合函数的单调性,即可得到所求范围.试题解析:(1)由余弦定理,可得,所以,所以,又,所以.(2)由正弦定理,,所以,因为是锐角三角形,所以得,所以,,即.20、(1)(2)【解题分析】试题分析:(1)由可将圆的极坐标方程化为直角坐标方程;(2)先将直线的参数方程代入圆C方程,再根据参数几何意义得,最后根据韦达定理求的值.试题解析:(1);(2)直线的参数方程代入圆C方程得.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 飞机型架装配工可视化标准执行考核试卷及答案
- 2025年六安市人民医院护理人员招聘10人考前自测高频考点模拟试题及答案详解(夺冠系列)
- Pelorol-minus-Pelorol-生命科学试剂-MCE
- Oxiran-2-ylmethyl-4-nitrobenzenesulfonate-生命科学试剂-MCE
- Oleic-acid-18-azido-生命科学试剂-MCE
- 设计专业笔试题目及答案
- 诗词大赛图文题库及答案
- 苏州初中入学试卷及答案
- 低空经济人才培养与引进计划
- 2025年江西中专统招试卷及答案
- 企业财务制度规范范本合集
- 2025员工试用期间合同范本下载
- 仓库人员安全培训模板课件
- 资产招商运营管理办法
- 邮政管理毕业论文
- 血透室医院感染课件
- T-CNCIA 01039-2025 丙烯酸酯副产甲基磺酸钠
- (2025年标准)ktv保安合同协议书
- 2025麻精药品培训考试试题(含参考答案)
- 多图中华民族共同体概论课件第十三讲先锋队与中华民族独立解放(1919-1949)根据高等教育出版社教材制作
- 胸闷病人的护理查房
评论
0/150
提交评论