




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省湖州市长兴县德清县安吉县三县2024届数学高二第二学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.2.甲、乙、丙、丁、戊五名同学参加某种技术竞赛,决出了第一名到第五名的五个名次,甲、乙去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军”;对乙说:“你当然不会是最差的”.从组织者的回答分析,这五个人的名次排列的不同情形种数共有()A. B. C. D.3.已知函数,是函数的导函数,则的图象大致是()A. B.C. D.4.的展开式中的系数为A. B. C. D.5.命题“对任意的,”的否定是A.不存在, B.存在,C.存在, D.对任意的,6.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设为整数,若a和b被m除得余数相同,则称a和b对模m同余.记为.若,,则b的值可以是()A.2019 B.2020 C.2021 D.20227.展开式中x2的系数为()A.15 B.60 C.120 D.2408.为虚数单位,复数的共轭复数是()A. B. C. D.9.已知实数成等比数列,则椭圆的离心率为A. B.2 C.或2 D.或10.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.11.已知集合,,且,则实数的取值范围为().A. B.C. D.12.在平面直角坐标系xOy中,双曲线的x2a2-y2b2=1(a>0,b>0)右支与焦点为FA.y=±22x B.y=±2二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数为______.14.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)15.已知集合,且下列三个关系:有且只有一个正确,则函数的值域是_______.16.命题“,”的否定是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某运动员射击一次所得环数的分布列如下:89111.41.41.2现进行两次射击,且两次射击互不影响,以该运动员两次射击中最高环数作为他的成绩,记为.(1)求该运动员两次命中的环数相同的概率;(2)求的分布列和数学期望.18.(12分)在四棱锥中,,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值.19.(12分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.20.(12分)2016年10月16日,在印度果阿出席金砖国家领导人第八次会议时,发表了题为《坚定信心,共谋发展》的重要讲话,引起世界各国的关注,为了了解关注程度,某机构选取“70后”和“80后”两个年龄段作为调查对象,进行了问卷调查,共调查了120名“80后”,80名“70后”,其中调查的“80后”有40名不关注,其余的全部关注;调查的“70”后有10人不关注,其余的全部关注.(1)根据以上数据完成下列2×2列联表:关注不关注合计“80后”“70后”合计(2)根据2×2列联表,能否在犯错误的概率不超过0.001的前提下,认为“关注与年龄段有关”?请说明理由。参考公式:K2=(n=a+b+c+d)附表:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.82821.(12分)2017年3月智能共享单车项目正式登陆某市,两种车型“小绿车”、“小黄车”采用分时段计费的方式,“小绿车”每30分钟收费元不足30分钟的部分按30分钟计算;“小黄车”每30分钟收费1元不足30分钟的部分按30分钟计算有甲、乙、丙三人相互独立的到租车点租车骑行各租一车一次设甲、乙、丙不超过30分钟还车的概率分别为,,,三人租车时间都不会超过60分钟甲、乙均租用“小绿车”,丙租用“小黄车”.求甲、乙两人所付的费用之和等于丙所付的费用的概率;2设甲、乙、丙三人所付的费用之和为随机变量,求的分布列和数学期望.22.(10分)已知的展开式中,所有项的二项式系数之和为128.(1)求展开式中的有理项;(2)求展开后所有项的系数的绝对值之和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【题目详解】则.故选C.【题目点拨】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.2、D【解题分析】分析:先排乙,再排甲,最后排剩余三人.详解:先排乙,有种,再排甲,有种,最后排剩余三人,有种因此共有,选D.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.3、A【解题分析】
首先求得导函数解析式,根据导函数的奇偶性可排除,再根据,可排除,从而得到结果.【题目详解】由题意得:为奇函数,图象关于原点对称可排除又当时,,可排除本题正确选项:【题目点拨】此题考查函数图象的识别,考查对函数基础知识的把握程度以及数形结合的思维能力,关键是能够利用奇偶性和特殊位置的符号来排除错误选项,属于中档题.4、D【解题分析】分析:先求出二项式展开式的通项,再令x的指数为4得到r的值,即得的展开式中的系数.详解:由题得二项展开式的通项为,令10-3r=4,所以r=2,所以的展开式中的系数为.故答案为:D.点睛:(1)本题主要考查二项式展开式中某项的系数的求法,意在考查学生对该知识的掌握水平.(2)的展开式中的系数为,不是,要把二项式系数和某一项的系数两个不同的概念区分开.5、C【解题分析】
注意两点:1)全称命题变为特称命题;2)只对结论进行否定.“对任意的,”的否定是:存在,选C.6、A【解题分析】
先利用二项式定理将表示为,再利用二项式定理展开,得出除以的余数,结合题中同余类的定义可选出合适的答案.【题目详解】,则,所以,除以的余数为,以上四个选项中,除以的余数为,故选A.【题目点拨】本题考查二项式定理,考查数的整除问题,解这类问题的关键就是将指数幂的底数表示为与除数的倍数相关的底数,结合二项定理展开式可求出整除后的余数,考查计算能力与分析问题的能力,属于中等题.7、B【解题分析】
∵展开式的通项为,令6-r=2得r=4,∴展开式中x2项为,所以其系数为60,故选B8、B【解题分析】分析:直接利用复数的除法的运算法则化简求解即可.详解:则复数的共轭复数是.故选C.点睛:本题考查复数的除法的运算法则的应用,复数的基本概念,是基础题.9、A【解题分析】
由1,m,9构成一个等比数列,得到m=±1.当m=1时,圆锥曲线是椭圆;当m=﹣1时,圆锥曲线是双曲线,(舍)由此即可求出离心率.【题目详解】∵1,m,9构成一个等比数列,∴m2=1×9,则m=±1.当m=1时,圆锥曲线+y2=1是椭圆,它的离心率是=;当m=﹣1时,圆锥曲线+y2=1是双曲线,故舍去,则离心率为.故选A.【题目点拨】本题考查圆锥曲线的离心率的求法,解题时要注意等比数列的性质的合理运用,注意分类讨论思想的灵活运用.10、A【解题分析】
根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【题目详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【题目点拨】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.11、C【解题分析】
由已知求得,再由,即可求得的范围,得到答案.【题目详解】由题意,集合,,可得,又由,所以.故选C.【题目点拨】本题主要考查了集合的混合运算,以及利用集合的运算求解参数的范围,其中解答中熟记集合基本运算方法是解答的关键,着重考查了推理与运算能力,属于基础题.12、A【解题分析】
根据抛物线定义得到yA+y【题目详解】由抛物线定义可得:|AF|+|BF|=y因为x2所以y渐近线方程为y=±2故答案选A【题目点拨】本题考查抛物线,双曲线的渐近线,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、56【解题分析】
利用二项式展开式的通项公式,即可容易求得结果.【题目详解】的展开式的通项公式为.令,解得,故其系数为.故答案为:.【题目点拨】本题考查利用二项式通项公式求指定项系数,属基础题.14、1260.【解题分析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.详解:若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.15、【解题分析】分析:根据集合相等的条件,列出a、b、c所有的取值情况,再判断是否符合条件,求出a,b,c的值,结合的最值即可求出函数的值域.详解:由{a,b,c}={2,3,4}得,a、b、c的取值有以下情况:当a=2时,b=3、c=4时,a≠3,b=3,c≠4都正确,不满足条件.当a=2时,b=4、c=3时,a≠3成立,c≠4成立,此时不满足题意;当a=3时,b=2、c=4时,都不正确,此时不满足题意;当a=3时,b=4、c=2时,c≠4成立,此时满足题意;当a=4时,b=2,c=3时,a≠3,c≠4成立,此时不满足题意;当a=4时,b=3、c=2时,a≠3,b=3成立,此时不满足题意;综上得,a=3、b=4、c=2,则函数=,当x>4时,f(x)=2x>24=16,当x≤4时,f(x)=(x﹣2)2+3≥3,综上f(x)≥3,即函数的值域为[3,+∞),故答案为[3,+∞).点睛:本题主要考查函数的值域的计算,根据集合相等关系以及命题的真假条件求出a,b,c的值是解决本题的关键.16、【解题分析】
特称命题的否定为全称命题,即可求解.【题目详解】解:由题意知,原命题的否定是:.故答案为:.【题目点拨】本题考查了命题的否定.易错点是混淆了命题的否定和否命题的概念.这类问题的常见错误是没有改变量词,或者对于大于的否定变成了小于.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1.36;(2)见解析,9.2【解题分析】
(1)先计算两次命中8环,9环,11环的概率,然后可得结果.(2)列出的所有可能结果,并分别计算所对应的概率,然后列出分布列,并依据数学期望的公式,可得结果.【题目详解】(1)两次都命中8环的概率为两次都命中9环的概率为两次都命中11环的概率为设该运动员两次命中的环数相同的概率为(2)的可能取值为8,9,11,,,的分布列为89111.161.481.36【题目点拨】本题考查离散型随机变量的分布列以及数学期望,重在于对随机变量的取值以及数学期望的公式的掌握,属基础题.18、(1)详见解析;(2).【解题分析】试题分析:(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.试题解析:(Ⅰ)证明:取PB的中点F,连接AF,EF.∵EF是△PBC的中位线,∴EF∥BC,且EF=.又AD=BC,且AD=,∴AD∥EF且AD=EF,则四边形ADEF是平行四边形.∴DE∥AF,又DE⊄面ABP,AF⊂面ABP,∴ED∥面PAB(Ⅱ)法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上.∴AB⊥AC,可得.过D作DG⊥AC于G,∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴DG⊥平面PAC,则DG⊥PC.过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,∴∠GHD是二面角A﹣PC﹣D的平面角.在△ADC中,,连接AE,.在Rt△GDH中,,∴,即二面角A﹣PC﹣D的余弦值法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上,∴AB⊥AC.∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系.可得,.设P(x,0,z),(z>0),依题意有,,解得.则,,.设面PDC的一个法向量为,由,取x0=1,得.为面PAC的一个法向量,且,设二面角A﹣PC﹣D的大小为θ,则有,即二面角A﹣PC﹣D的余弦值.19、(1);(2).【解题分析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件,(3)注意锐角三角形的各角都是锐角.(4)把边的关系转化成角,对于求边的取值范围很有帮助试题解析:(1)由,得,所以,则,由,。(2)由(1)得,即,又为锐角三角形,故从而.由,所以所以,所以因为所以即考点:余弦定理的变形及化归思想20、(1)见解析;(2)见解析【解题分析】试题分析:(1)根据题设中的数据,即可填写的列联表;(2)利用独立性检验的公式,计算的值,即可作出预测.试题解析:(1)2X2列联表:(2)根据列联表计算K2=≈11.11>10.828对照观测值得:能在犯错误的概率不超过0.001的前提下认为“关注”与“不关注”与年龄段有关.21、(1);(2)见解析.【解题分析】
(1)利用相互独立事件的概率公式,分两种情况计算概率即可;(2)根据相互独立事件的概率公式求出各
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鱼都特色小镇合作协议
- 脑梗塞临床护理
- 生产运营管理:企业战略和运作策略
- 管理人员培训心得体会模版
- 2025届江苏省泰州市部分地区八年级数学第二学期期末统考试题含解析
- 高二英语备课组工作总结
- 关于“互联网+”大学生创新创业大赛的需求调研
- 医学写作翻译课程介绍
- 2025年会计试用期工作总结模版
- 新质生产力与财政
- 《研学旅行基地运营与管理》课件-2.2研学旅行基地产品的开发
- 柘荣县生态公益林护林员考核评分表
- 摊位简单转让合同范本2024年
- 大学生创新创业基础(广西师范大学)智慧树知到期末考试答案章节答案2024年广西师范大学
- 鄂尔多斯2024年内蒙古鄂尔多斯市康巴什区事业单位招聘31人笔试历年典型考题及考点附答案解析
- 珠宝零售店合伙人退伙协议
- 防止老公出轨的协议书
- 《大学生创业》课件完整版
- 2024广西公需课高质量共建“一带一路”谱写人类命运共同体新篇章答案
- 神经电生理评估在康复医学的应用
- 21CJ103-1玻璃纤维增强聚酯(FRP)板材应用构造(一) 采光带、通风、消防排烟天窗及防腐板
评论
0/150
提交评论