天津南开中学滨海生态城学校2024届数学高二第二学期期末达标检测模拟试题含解析_第1页
天津南开中学滨海生态城学校2024届数学高二第二学期期末达标检测模拟试题含解析_第2页
天津南开中学滨海生态城学校2024届数学高二第二学期期末达标检测模拟试题含解析_第3页
天津南开中学滨海生态城学校2024届数学高二第二学期期末达标检测模拟试题含解析_第4页
天津南开中学滨海生态城学校2024届数学高二第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津南开中学滨海生态城学校2024届数学高二第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,其中为虚数单位,则在复平面上复数对应的点的坐标为()A. B. C. D.2.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为A. B. C. D.3.已知函数与分别是定义在上的奇函数和偶函数,且,则的值为()A. B. C. D.4.已知,为的导函数,则的图象是()A. B.C. D.5.已知一组样本点,其中.根据最小二乘法求得的回归方程是,则下列说法正确的是()A.若所有样本点都在上,则变量间的相关系数为1B.至少有一个样本点落在回归直线上C.对所有的预报变量,的值一定与有误差D.若斜率,则变量与正相关6.某一批花生种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是()A. B. C. D.7.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是A.72 B.120 C.144 D.1688.若=(4,2,3)是直线l的方向向量,=(-1,3,0)是平面α的法向量,则直线l与平面α的位置关系是A.垂直 B.平行C.直线l在平面α内 D.相交但不垂直9.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。现从该小组中选出3位同学分别到A,B,C三地进行社会调查,若选出的同学中男女均有,则不同安排方法有()A.70种 B.140种 C.420种 D.840种10.在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是()A.①③ B.②④ C.①④ D.②③11.已知复数满足,则()A. B. C. D.12.对任意复数,为虚数单位,则下列结论中正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数为奇函数,则______.14.如图,在正三棱柱中,已知它的底面边长为10,高为20,若P、Q分别是、的中点,则异面直线与所成角的大小为_________(结果用反三角函数表示).15.一个兴趣学习小组由12男生6女生组成,从中随机选取3人作为领队,记选取的3名领队中男生的人数为X,则X的期望EX=16.函数为上的奇函数,若对任意的且,都有,已知,则不等式的解集为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕,世界杯给俄罗斯经济带来了一定的增长,某纪念商品店的销售人员为了统计世界杯足球赛期间商品的销售情况,随机抽查了该商品商店某天200名顾客的消费金额情况,得到如图频率分布表:将消费顾客超过4万卢布的顾客定义为”足球迷”,消费金额不超过4万卢布的顾客定义为“非足球迷”.消费金额/万卢布合计顾客人数93136446218200(1)求这200名顾客消费金额的中位数与平均数(同一组中的消费金额用该组的中点值作代表;(2)该纪念品商店的销售人员为了进一步了解这200名顾客喜欢纪念品的类型,采用分层抽样的方法从“非足球迷”,“足球迷”中选取5人,再从这5人中随机选取3人进行问卷调查,则选取的3人中“非足球迷”人数的分布列和数学期望.18.(12分)设,,其中a,.Ⅰ求的极大值;Ⅱ设,,若对任意的,恒成立,求a的最大值;Ⅲ设,若对任意给定的,在区间上总存在s,,使成立,求b的取值范围.19.(12分)如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上.并记组成该“钉”的四条等长的线段公共点为,钉尖为.(1)判断四面体的形状,并说明理由;(2)设,当在同一水平面内时,求与平面所成角的大小(结果用反三角函数值表示);(3)若该“钉”着地后的四个线段根据需要可以调节与底面成角的大小,且保持三个线段与底面成角相同,若,,问为何值时,的体积最大,并求出最大值.20.(12分)某高速公路收费站入口处的安全标识墩如图1所示.墩的上半部分是正四棱锥P﹣EFGH,下半部分是长方体ABCD﹣EFGH.图2、图3分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图;(2)求该安全标识墩的体积.21.(12分)设函数(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)当时,函数f(x)的最小值为2,求函数f(x)的最大值及对应的x的值.22.(10分)随着人们生活水平的日益提高,人们对孩子的培养也愈发重视,各种兴趣班如雨后春笋般出现在我们日常生活中.据调查,3~6岁的幼儿大部分参加的是艺术类,其中舞蹈和绘画比例最大,就参加兴趣班的男女比例而言,女生参加兴趣班的比例远远超过男生.随机调查了某区100名3~6岁幼儿在一年内参加舞蹈或绘画兴趣班的情况,得到如下表格:不参加舞蹈且不参加绘画兴趣班参加舞蹈不参加绘画兴趣班参加绘画不参加舞蹈兴趣班参加舞蹈且参加绘画兴趣班人数14352625(Ⅰ)估计该区3~6岁幼儿参加舞蹈兴趣班的概率;(Ⅱ)通过所调查的100名3~6岁幼儿参加兴趣班的情况,填写下面列联表,并根据列联表判断是否有99.9%的把握认为参加舞蹈兴趣班与性别有关.参加舞蹈兴趣班不参加舞蹈兴趣班总计男生10女生70总计附:.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

利用复数的运算法则、几何意义即可得出.【题目详解】z=,故选:C.【题目点拨】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2、C【解题分析】

求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为xA﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故答案为:C.3、C【解题分析】

根据条件可得,与联立便可解出和,从而得到的值。【题目详解】①;;又函数与分别是定义在上的奇函数和偶函数;,;②;联立①②,解得所以;故答案选C【题目点拨】本题考查奇函数、偶函数的定义,解题的关键是通过建立关于与的方程组求出和的解析式,属于中档题。4、A【解题分析】

先化简f(x)=,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在上单调递减,从而排除C,即可得出正确答案.【题目详解】由f(x)=,∴,它是一个奇函数,其图象关于原点对称,故排除B,D.又,当﹣<x<时,cosx>,∴<0,故函数y=在区间上单调递减,故排除C.故选A.【题目点拨】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,属于基础题.5、D【解题分析】分析:样本点均在直线上,则变量间的相关系数,A错误;样本点可能都不在直线上,B错误;样本点可能在直线上,即预报变量对应的估计值可能与可以相等,C错误;相关系数与符号相同D正确.详解:选项A:所有样本点都在,则变量间的相关系数,相关系数可以为,故A错误.选项B:回归直线必过样本中心点,但样本点可能都不在回归直线上,故B错误.选项C:样本点可能在直线上,即可以存在预报变量对应的估计值与没有误差,故C错误.选项D:相关系数与符号相同,若斜率,则,样本点分布从左至右上升,变量与正相关,故D正确.点睛:本题考查线性回归分析的相关系数、样本点、回归直线、样本中心点等基本数据,基本概念的准确把握是解题关键.6、B【解题分析】

根据题意得到,计算得到答案.【题目详解】播下3粒种子恰有2粒发芽的概率.故选:.【题目点拨】本题考查了概率的计算,意在考查学生的计算能力.7、B【解题分析】分两类,一类是歌舞类用两个隔开共种,第二类是歌舞类用三个隔开共种,所以N=+=120.种.选B.8、D【解题分析】

判断直线的方向向量与平面的法向量的关系,从而得直线与平面的位置关系.【题目详解】显然与不平行,因此直线与平面不垂直,又,即与不垂直,从而直线与平面不平行,故直线与平面相交但不垂直.故选D.【题目点拨】本题考查用向量法判断直线与平面的位置关系,方法是由直线的方向向量与平面的法向量的关系判断,利用向量的共线定理和数量积运算判断直线的方向向量与平面的法向量是否平行和垂直,然后可得出直线与平面的位置关系.9、C【解题分析】

将情况分为2男1女和2女1男两种情况,相加得到答案.【题目详解】2男1女时:C52女1男时:C共有420种不同的安排方法故答案选C【题目点拨】本题考查了排列组合的应用,将情况分为2男1女和2女1男两种情况是解题的关键.10、B【解题分析】

说法①:可以根据线面平行的判定理判断出本说法是否正确;说法②:根据线面垂直的性质和面面平行的判定定理可以判断出本说法是否正确;说法③:当与相交时,是否在平面内有不共线的三点到平面的距离相等,进行判断;说法④:可以通过反证法进行判断.【题目详解】①平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知②正确;③若平面内有不共线的三点到平面的距离相等,则与可能平行,也可能相交,不正确;易知④正确.故选B.【题目点拨】本题考查了线线位置关系、面面位置关系的判断,分类讨论是解题的关键,反证法是经常用到的方程.11、C【解题分析】

,,故选C.12、B【解题分析】分析:由题可知,然后根据复数的运算性质及基本概念逐一核对四个选项得到正确答案.详解:已知则选项A,,错误.选项B,,正确.选项C,,错误.选项D,,不恒成立,错误.故选B.点睛:本题考查了复数的运算法则、共轭复数的定义、复数模的计算.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

由函数在时有意义,且为奇函数,由奇函数的性质可得,求出再代入求解即可.【题目详解】解:因为函数为奇函数,所以,即,所以,所以,故答案为:.【题目点拨】本题考查了函数的奇偶性,重点考查了奇函数的性质,属基础题.14、;【解题分析】

作出两异面直线所成的角,然后在三角形求解.【题目详解】取中点,连接,∵是中点,∴,∴异面直线与所成的角为或其补角.在正三棱柱中,,则,,∴,,,∴,∴异面直线与所成的角的余弦为,角的大小为.故答案为.【题目点拨】本题考查异面直线所成的角,解题关键是作出两条异面直线所成的角,然后通过解三角形得出结论.方法是根据定义,平移其中一条直线使之与另一条相交,则异面直线所成的角可确定.平行线常常通过中位线、或者线面平行的性质定理等得出.15、2【解题分析】试题分析:由题意X的可能取值为0,1,2,3,P(X=0)=C6P(X=1)=C12P(X=2)=C12P(X=3)=C12∴E(X)=0×20816+1×180816+2×396816考点:离散型随机变量的期望与方差16、【解题分析】

根据题意,可得函数在上的单调性,结合可得在上的符号,利用函数的奇偶性可得在上,,则上,,即可分析的解,可得答案.【题目详解】根据题意,若对任意的,且,都有,

则在上为增函数,

又由,则在上,,则在上,,

又由为奇函数,则在上,,则上,,

或,即或或或

解得:,

即不等式的解集为;

故答案为:【题目点拨】本题主要考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】

(1)在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值.平均数的估计值等于频率直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,这样就可以求出这200名顾客消费金额的中位数与平均数.(2)通过频率分布表可以求“足球迷”与“非足球迷”的人数比,这样可以求出从“足球迷”“非足球迷”中选取5人,其中“足球迷”的人数及“非足球迷”的人数,这样可以求出选取的3人中非足球迷的人数,取值是多少,求出它们相对应的概率,最后列出分布列,算出数学期望.【题目详解】(1)设这200名顾客消费金额的中位数为t,则有,解得所以这200名顾客消费金额的中位数为,这200名顾客消费金额的平均数,所以这200名顾客的消费金额的平均数为3.367万卢布.(2)由频率分布表可知,“足球迷”与“非足球迷”的人数比为,采用分层抽样的方法,从“足球迷”“非足球迷”中选取5人,其中“足球迷”有人,“非足球迷”有人.设为选取的3人中非足球迷的人数,取值为1,2,3.则.分布列为:1230.30.60.1.【题目点拨】本题考查了利用频率分布表求中位数、平均数.考查了求离散型随机变量分布列及数学期望的方法.18、(Ⅰ)1;(Ⅱ);(Ⅲ).【解题分析】

Ⅰ求出的导数,令导数大于0,得增区间,令导数小于0,得减区间,进而求得的极大值;Ⅱ当,时,求出的导数,以及的导数,判断单调性,去掉绝对值可得,构造函数,求得的导数,通过分离参数,求出右边的最小值,即可得到a的范围;Ⅲ求出的导数,通过单调区间可得函数在上的值域为,由题意分析时,结合的导数得到在区间上不单调,所以,,再由导数求得的最小值,即可得到所求范围.【题目详解】Ⅰ,当时,,在递增;当时,,在递减.则有的极大值为;Ⅱ当,时,,,在恒成立,在递增;由,在恒成立,在递增.设,原不等式等价为,即,,在递减,又,在恒成立,故在递增,,令,,∴,在递增,即有,即;Ⅲ,当时,,函数单调递增;当时,,函数单调递减.又因为,,,所以,函数在上的值域为.由题意,当取的每一个值时,在区间上存在,与该值对应.时,,,当时,,单调递减,不合题意,当时,时,,由题意,在区间上不单调,所以,,当时,,当时,0'/>所以,当时,,由题意,只需满足以下三个条件:,,使.,所以成立由,所以满足,所以当b满足即时,符合题意,故b的取值范围为.【题目点拨】本题考查导数的运用:求单调区间和极值,主要考查不等式恒成立和存在性问题,注意运用参数分离和构造函数通过导数判断单调性,求出最值,属于难题.19、(1)正四面体;理由见解析(2);(3)当时,最大体积为:;【解题分析】

(1)根据线段等长首先确定为四面体外接球球心;又底面,可知为正三棱锥;依次以为顶点均有正三棱锥结论出现,可知四面体棱长均相等,可知其为正四面体;(2)由为四面体外接球球心及底面可得到即为所求角;设正四面体棱长为,利用表示出各边,利用勾股定理构造方程可求得,从而可求得,进而得到结果;(3)取中点,利用三线合一性质可知,从而可用表示出底面边长和三棱锥的高,根据三棱锥体积公式可将体积表示为关于的函数,利用导数求得函数的最大值,并确定此时的取值,从而得到结果.【题目详解】(1)四面体为正四面体,理由如下:四条线段等长,即到四面体四个顶点距离相等为四面体外接球的球心又底面在底面的射影为的外心四面体为正三棱锥,即,又任意抛至水平面后,总有一端所在的直线竖直向上,若竖直向上可得:可知四面体各条棱长均相等为正四面体(2)由(1)知,四面体为正四面体,且为其外接球球心设中心为,则平面,如下图所示:即为与平面所成角设正四面体棱长为则,在中,,解得:即与平面所成角为:(3)取中点,连接,,为中点且,令,,则设,,则令,解得:,当时,;当时,当时,取极大值,即为最大值:即当时,取得最大值,最大值为:此时,即综上所述,当时,体积最大,最大值为:【题目点拨】本题考查立体几何中的几何体特征判断、直线与平面所成角的求解、三棱锥体积的最值的求解问题;求解三棱锥体积的最值问题,关键是要把底面面积和三棱锥的高均利用某一变量来进行表示,从而将所求体积最值问题转化为关于此变量的函数最值问题的求解,进而通过导数或其他求解函数最值的方法求得结果.20、(1)见解析(2)64000(cm3)【解题分析】

(1)由于墩的上半部分是正四棱锥P﹣EFGH,下半部分是长方体ABCD﹣EFGH,故其正视图与侧视图全等.(2)由三视图我们易得,底面为边长为40cm的正方形,长方体的高为20cm,棱锥高为60cm,代入棱柱和棱锥体积公式,易得结果.【题目详解】(1)该安全标识墩侧视图如图所示.(2)该安全标识墩的体积V=VP﹣EFGH+VABCD﹣EFGH40×40×60+40×40×20=64000(cm3).【题目点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论