




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京科技大学附属中学高二数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆(x+1)2+y2=12的圆心为C,点P是直线l:mx-y-5m+4=0上的点,若圆C上存在点Q使∠CPQ=A.1-306C.0,1252.在等差数列中,,则()A.45 B.75 C.180 D.3603.在的展开式中,的系数为()A.-120 B.120 C.-15 D.154.等差数列的前项和,若,则()A.8 B.10 C.12 D.145.设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应A.从东边上山 B.从西边上山 C.从南边上山 D.从北边上山6.已知随机变量X服从正态分布且P(X4)=0.88,则P(0X4)=()A.0.88 B.0.76 C.0.24 D.0.127.某几何体的三视图如图所示,其中正视图和侧视图的上半部分均为半圆,下半部分为等腰直角三角形,则该几何体的表面积为()A. B. C. D.8.已知三棱锥的所有顶点都在球的球面上,,,若三棱锥体积的最大值为2,则球的表面积为()A. B. C. D.9.函数的部分图象大致为()A. B.C. D.10.将6位女生和2位男生平分为两组,参加不同的两个兴趣小组,则2位男生在同一组的不同的选法数为()A.70 B.40 C.30 D.2011.曲线与直线围成的封闭图形的面积为()A. B. C. D.12.已知随机变量服从二项分布,则().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某工厂生产甲、乙、丙、丁4类产品共计3000件已知甲、乙、丙、丁4类产品数量之比为1:2:4:现要用分层抽样的方法从中抽取150件进行质量检测,则乙类产品抽取的件数为______.14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的左视图如图所示,则该三棱锥的体积是________;15.已知随机变量服从正态分布,若,则________.16.已知随机变量,则___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知过点A(0,2)的直线l与椭圆C:x2(1)若直线l的斜率为k,求k的取值范围;(2)若以PQ为直径的圆经过点E(1,0),求直线l的方程.18.(12分)在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列.19.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:月份12345违章驾驶员人数1201051009085(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程并预测该路口7月份的不“礼让斑马线”违章驾驶员人数;(Ⅱ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:不礼让斑马线礼让斑马线合计驾龄不超过1年22830驾龄1年以上81220合计302050能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?参考公式:,,(其中)0.1500.1000.0500.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)已知,且.证明:(Ⅰ);(Ⅱ).21.(12分)设集合,如果存在的子集,,同时满足如下三个条件:①;②,,两两交集为空集;③,则称集合具有性质.(Ⅰ)已知集合,请判断集合是否具有性质,并说明理由;(Ⅱ)设集合,求证:具有性质的集合有无穷多个.22.(10分)已知函数.证明:;已知,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
问题转化为C到直线l的距离d⩽4.【题目详解】如图所示:过P作圆C的切线PR,切点为R,则∠CPQ⩽∠CPR,∴sin60°⩽sin∴CPmin⩽4,则C到直线l∴|-m-0-5m+4|m2故选:C.【题目点拨】本题考查了直线与圆的位置关系,属中档题.2、C【解题分析】
由,利用等差数列的性质求出,再利用等差数列的性质可得结果.【题目详解】由,得到,则.故选C.【题目点拨】本题主要考查等差数列性质的应用,属于基础题.解与等差数列有关的问题时,要注意应用等差数列的性质:若,则.3、C【解题分析】
写出展开式的通项公式,令,即,则可求系数.【题目详解】的展开式的通项公式为,令,即时,系数为.故选C【题目点拨】本题考查二项式展开的通项公式,属基础题.4、C【解题分析】试题分析:假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.5、D【解题分析】从东边上山共种;从西边上山共种;从南边上山共种;从北边上山共种;所以应从北边上山.故选D.6、B【解题分析】
正态曲线关于对称,利用已知条件转化求解概率即可.【题目详解】因为随机变量服从正态分布,,得对称轴是,,,,故选B.【题目点拨】本题在充分理解正态分布的基础上,充分利用正态分布的对称性解题,是一道基础题.7、A【解题分析】
根据三视图知:几何体为半球和圆柱和圆锥的组合体,计算表面积得到答案.【题目详解】根据三视图知:几何体为半球和圆柱和圆锥的组合体..故选:.【题目点拨】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.8、D【解题分析】分析:根据棱锥的最大高度和勾股定理计算球的半径,从而得出外接球的表面积.详解:因为,所以,过的中点作平面的垂下,则球心在上,设,球的半径为,则棱锥的高的最大值为,因为,所以,由勾股定理得,解得,所以球的表面积为,故选D.点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.9、C【解题分析】
根据函数的奇偶性与正负值排除判定即可.【题目详解】函数,故函数是奇函数,图像关于原点对称,排除B,D,当x>0且x→0,f(x)>0,排除A,故选:C.【题目点拨】本题主要考查了函数图像的判定,属于基础题型.10、C【解题分析】
先确定与2位男生同组的女生,再进行分组排列,即得结果【题目详解】2位男生在同一组的不同的选法数为,选C.【题目点拨】本题考查分组排列问题,考查基本分析求解能力,属基础题.11、B【解题分析】由,直线,令,可得或,曲线与直线交于点或,因此围成的封闭图形的面积,故选B.12、D【解题分析】表示做了次独立实验,每次试验成功概率为,则.选.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据甲乙丙丁的数量之比,利用分层抽样的定义即可得到结论.【题目详解】解:甲、乙、丙、丁4类产品共计3000件,已知甲、乙、丙、丁4类产品的数量之比为1:2:4:8,用分层抽样的方法从中抽取150件,则乙类产品抽取的件数为,故答案为:1.【题目点拨】本题主要考查分层抽样的定义和应用,熟练掌握分层抽样的定义是解决问题的关键.14、【解题分析】
由左视图得出三棱锥中线面关系及棱的长度.【题目详解】由左视图知三棱锥的高为,底面等腰三角形的底边长为,又底面等腰三角形的腰长为2,这个等腰三角形的面积为,.故答案为:.【题目点拨】本题考查棱锥的体积,解题是由左视图得出棱锥的高为1,底面等腰三角形的底边长为,从而由体积公式可求得棱锥的体积,本题还考查了空间想象能力.15、0.4558【解题分析】
随机变量服从正态分布,,根据对称性可求得的值,再根据概率的基本性质,可求得.【题目详解】因为,所以,故.所以.故答案为:0.4558.【题目点拨】本题考查了正态分布曲线的对称性,属于基础题.16、【解题分析】
利用正态密度曲线的对称性得出,可得出答案。【题目详解】由于随机变量,正态密度曲线的对称轴为直线,所以,,故答案为:。【题目点拨】本题考查正态分布概率的计算,解这类问题的关键就是要充分利用正态密度曲线的对称轴,利用对称性解题,考查计算能力,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(-∞,-1)∪(1,+∞);(2)x=0或y=-7【解题分析】试题分析:(1)由题意设出直线l的方程,联立直线方程与椭圆方程,化为关于的一元二次方程后由判别式大于求得的取值范围;(2)设出的坐标,利用根与系数的关系得到的横坐标的和与积,结合以为直径的圆经过点,由EP·EQ=0求得值,则直线l方程可求.试题解析:(1)依题意,直线l的方程为y=kx+2,由x23+y2=1y=kx+2,消去y得(3k2+1)x(2)当直线l的斜率不存在时,直线l的方程为x=0,则P(0,1),Q(0,-1),此时以为直径的圆过点E(1,0),满足题意.直线l的斜率存在时,设直线l的方程为y=kx+2,P(x1,y1),Q(x2EP=(k2+1)因为以直径的圆过点E(1,0),所以EP·EQ=0,即12k+143k2故直线l的方程为y=-76x+2.综上,所求直线l的方程为x=0考点:1.直线与椭圆的综合问题;2.韦达定理.【方法点睛】本题主要考查的是椭圆的简单性质,直线与圆锥曲线位置关系的应用,体现了设而不求的解题思想方法,是中档题,本题(1)问主要是联立直线与椭圆方程,化成一元二次方程的判别式大于求出的取值范围,(2)利用EP·EQ=0求出值,进而求出直线方程,因此解决直线与圆锥曲线位置关系时应该熟练运用韦达定理解题.18、(1);(2)见解析.【解题分析】试题分析:(1)由题意便知需命中2次引爆油罐,且第二次命中时停止射击,这样可设Ai=“射击i+1次引爆油罐”,i=1,2,3,4,根据符合二项分布的变量的概率的求法及独立事件同时发生的概率的求法即可求出油罐被引爆的概率;
(2)根据题意知变量ξ的取值为2,3,4,5,并且取5时包含这样几种情况:5次都未打中,5次只有1次打中,打中2次且第5次打中,这三个事件相互独立,求出每个事件的概率再求和即可,列表表示ξ的分布列,根据期望的计算公示求ξ的数学期望即可.试题解析:(1)“油罐被引爆”的事件为事件,其对立事件为包括“一次都没有命中”和“只命中一次”,即,∴(2)射击次数的可能取值为2,3,4,5故的分布列为:19、(Ⅰ)66人;(Ⅱ)能.【解题分析】
(I)利用所给数据,求出线性回归方程,令即可得出答案。(Ⅱ)由列联表中数据计算出观测值,与临界值比较即可。【题目详解】(I)利用所给数据,计算=×(1+2+3+4+5)=3,=×(120+105+100+90+85)=100;===100﹣(﹣8.5)×3=125.5;∴与之间的回归直线方程;当时,,即预测该路口7月份的不“礼让斑马线”违章驾驶员有66人;(II)由列联表中数据,计算,由此能判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关.【题目点拨】本题考查线性回归方程与独立性检验,考查学生的理解计算能力,属于简单题。20、(Ⅰ)详见解析;(Ⅱ)详见解析.【解题分析】
(Ⅰ)根据均值不等式可以证明;(Ⅱ)根据均值不等式和已知条件的灵活应用可以证明.【题目详解】证明Ⅰ,b,,且,,,当且仅当时,等号成立
Ⅱ,,,,,【题目点拨】本题主要考查不等式的证明,均值不等式是常用工具,侧重考查逻辑推理的核心素养.21、(Ⅰ)不具有,理由见解析;(Ⅱ)证明见解析【解题分析】
(Ⅰ)由条件易得集合具有性质,对集合中的进行讨论,利用题设条件得出集合不具有性质;(Ⅱ)利用反证法,假设具有性质的集合有限个,根据题设条件得出矛盾,即可证明具有性质的集合有无穷多个.【题目详解】解:(Ⅰ)具有性质,如可取;不具有性质;理由如下:对于中的元素,或者如果,那么剩下个元素,不满足条件;如果,那么剩下个元素,也不满足条件.因此,集合不具有性质.(Ⅱ)证明:假设符合条件的只有有限个,设其中元素个数最多的为.对于,由题设可知,存在,满足条件.构造如下集合由于所以易验证,,对集合满足条件,而也就是说存在比的元素个数更多的集合具有性质,与假设矛盾.因此具
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国数据收集器行业投资前景预测研究报告
- 2025届内蒙古自治区锡林郭勒盟太仆寺旗宝昌镇第一中学高三最后一卷英语试卷含解析
- 网店运营基础复习题(含参考答案)
- 中药炮制考试模拟题与参考答案
- 福建省闽侯第二中学2025届高考冲刺英语模拟试题含解析
- 广东省深圳市2024-2025学年高二下学期4月期中考试政治试题(原卷版+解析版)
- 数字化教具发展考核试卷
- 畜牧良种选育与繁殖方法考核试卷
- 精神康复中的压力管理技巧考核试卷
- 企业信用体系建设考核试卷
- 2024年新人教版七年级上册历史教学课件 第10课 秦末农民大起义
- 扶济复新获奖课件
- 2024年甘肃高考地理试卷(真题+答案)
- 《重大疾病保险的疾病定义使用规范修订版》
- 工业机器人的发展历史
- 干细胞治疗行业营销策略方案
- 烟草专卖管理员:烟草法律法规知识考试测试题(题库版)
- 2024年广东省中考生物+地理试卷(含答案)
- 2024年(中级)嵌入式系统设计师软考试题库(含答案)
- 小小科学家《物理》模拟试卷A(附答案)
- 2023年7月N2真题及答案解析
评论
0/150
提交评论