2024届辽宁省大连市普兰店市第六中学数学高二下期末综合测试模拟试题含解析_第1页
2024届辽宁省大连市普兰店市第六中学数学高二下期末综合测试模拟试题含解析_第2页
2024届辽宁省大连市普兰店市第六中学数学高二下期末综合测试模拟试题含解析_第3页
2024届辽宁省大连市普兰店市第六中学数学高二下期末综合测试模拟试题含解析_第4页
2024届辽宁省大连市普兰店市第六中学数学高二下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省大连市普兰店市第六中学数学高二下期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在以点为焦点的抛物线(为参数)上,则等于()A. B. C. D.2.在一次抽奖活动中,一个箱子里有编号为至的十个号码球(球的大小、质地完全相同,但编号不同),里面有个号码为中奖号码,若从中任意取出个小球,其中恰有个中奖号码的概率为,那么这个小球中,中奖号码小球的个数为A. B. C. D.3.函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数aA.(-3,-2)∪(-1,0) B.(-3,-2) C.(-4.已知(是实常数)是二项式的展开式中的一项,其中,那么的值为A. B. C. D.5.设复数z满足(1+i)z=2i,则|z|=()A. B.C. D.26.设是定义在上恒不为零的函数,对任意实数,都有,若,,则数列的前项和的取值范围是()A. B. C. D.7.已知函数f(x)=(2x-1)ex+ax2-3a(A.[-2e,+∞) B.-328.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的A.甲辰年 B.乙巳年 C.丙午年 D.丁未年9.的展开式中的系数为()A.5 B.10 C.20 D.3010.某班准备从甲、乙、丙等6人中选出4人参加某项活动,要求甲、乙、丙三人中至少有两人参加,那么不同的方法有()A.18种 B.12种 C.432种 D.288种11.已知在R上是奇函数,且A.-2 B.2 C.-98 D.9812.随机变量服从正态分布,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将半径为1和2的两个铅球,熔成一个大铅球,那么这个大铅球的表面积是__________.14.集合,若,则实数的值为__________.15.设为抛物线的焦点,为抛物线上两点,若,则____________.16.已知复数z满足,若z在复平面上对应点的轨迹是椭圆,则实数a的取值范围是______;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设事件A表示“关于的一元二次方程有实根”,其中,为实常数.(Ⅰ)若为区间[0,5]上的整数值随机数,为区间[0,2]上的整数值随机数,求事件A发生的概率;(Ⅱ)若为区间[0,5]上的均匀随机数,为区间[0,2]上的均匀随机数,求事件A发生的概率.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(I)求曲线的普通方程和直线的直角坐标方程;(II)求曲线上的点到直线的距离的最大值.19.(12分)(1)当时,求证:;(2)当时,恒成立,求实数的取值范围.20.(12分)已知不等式的解集为.(1)求集合;(2)设,证明:.21.(12分)已知函数,若定义域内存在实数x,满足,则称为“局部奇函数.(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由(2)设是定义在上的“局部奇函数”,求实数m的取值范围.22.(10分)已知曲线上的最高点为,该最高点到相邻的最低点间曲线与轴交于一点,求函数解析式,并求函数在上的值域.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:欲求,根据抛物线的定义,即求到准线的距离,从而求得即可.详解:抛物线,准线,为到准线的距离,即为4,故选:D.点睛:抛物线的离心率e=1,体现了抛物线上的点到焦点的距离等于到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简化.2、C【解题分析】

利用古典概型列出恰有1个中奖号码的概率的方程,解方程即可.【题目详解】依题意,从10个小球中任意取出1个小球,其中恰有1个中奖号码的概率为,所以,所以n(10﹣n)(9﹣n)(8﹣n)=180,(n∈N*)解得n=1.故选:C.【题目点拨】本题考查了古典概型的概率公式的应用,考查了计数原理及组合式公式的运算,属于中档题.3、A【解题分析】

求得f'(x)=x(2+x)ex,函数f(x)=x2ex在区间(a,a+1)【题目详解】f'(x)=2xe∵函数f(x)=x2ex在区间(a,a+1)上存在极值点令f'(x)=0,解得x=0或-2.∴a<0<a+1,或a<-2<a+1,解得:-1<a<0,或-3<a<-2,∴实数a的取值范围为(-3,-2)∪(-1,0).故选【题目点拨】本题考查了利用导数研究函数的极值,考查了推理能力与计算能力,意在考查转化与划归思想的应用以及综合所学知识解答问题的能力,属于中档题.4、A【解题分析】

根据二项式定理展开式的通项公式,求出m,n的值,即可求出k的值.【题目详解】展开式的通项公式为Tt+1=x5﹣t(2y)t=2tx5﹣tyt,∵kxmyn(k是实常数)是二项式(x﹣2y)5的展开式中的一项,∴m+n=5,又m=n+1,∴得m=3,n=2,则t=n=2,则k=2t224×10=40,故选A.【题目点拨】本题主要考查二项式定理的应用,结合通项公式建立方程求出m,n的值是解决本题的关键.5、C【解题分析】

先求出的表达式,然后对其化简,求出复数的模即可.【题目详解】由题意,,所以.故选:C.【题目点拨】本题考查复数的四则运算,考查复数的模的计算,属于基础题.6、A【解题分析】

根据f(x)•f(y)=f(x+y),令x=n,y=1,可得数列{an}是以为首项,以为等比的等比数列,进而可以求得Sn,进而Sn的取值范围.【题目详解】∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),∴令x=n,y=1,得f(n)•f(1)=f(n+1),即f(1),∴数列{an}是以为首项,以为等比的等比数列,∴an=f(n)=()n,∴Sn1﹣()n∈[,1).故选:C.【题目点拨】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x,y∈R,都有f(x)•f(y)=f(x+y)得到数列{an}是等比数列,属中档题.7、A【解题分析】

把函数f(x)为增函数,转化为f'(x)≥0在(0,+∞)上恒成立,得到a≥-(2x+1)ex2x【题目详解】由题意,函数f(x)=(2x-1)e则f'(x)=2ex+(2x-1)设g(x)=则g令g'(x)>0,得到0<x<12,则函数g(x)在0,1即a的取值范围是[-2e故选A.【题目点拨】本题主要考查了利用函数的单调性与极值(最值)求解参数问题,其中解答中根据函数的单调性,得到a≥-(2x+1)e8、C【解题分析】

按照题中规则依次从2019年列举到2026年,可得出答案。【题目详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选:C。【题目点拨】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题。9、D【解题分析】

根据乘法分配律和二项式展开式的通项公式,列式求得的系数.【题目详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有的为,故展开式中的系数为,故选D.【题目点拨】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.10、D【解题分析】

根据题意,6人中除甲乙丙之外的3人为a、b、c,分2步进行分析:①先在6人中选出4人,要求甲、乙、丙三人中至少有两人参加,②将选出的4人全排列,安排4人的顺序,由分步计数原理计算可得答案.【题目详解】根据题意,6人中除甲乙丙之外的3人为a、b、c,分2步进行分析:①先在6人中选出4人,要求甲、乙、丙三人中至少有两人参加,若甲、乙、丙三人都参加,在a、b、c三人中任选1人,有3种情况,若甲、乙、丙三人有2人参加,在a、b、c三人中任选1人,有=9种情况,则有3+9=12种选法;②将选出的4人全排列,安排4人的顺序,有A44=24种顺序,则不同的发言顺序有12×24=288种;故答案为:D.【题目点拨】(1)本题主要考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常见解法有:一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.11、A【解题分析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2019)=-2.故选A12、D【解题分析】

利用正态密度曲线的对称性得出,再将代数式与相乘,展开后可利用基本不等式求出的最小值.【题目详解】由于,由正态密度曲线的对称性可知,,所以,,即,,由基本不等式可得,当且仅当,即当时,等号成立,因此,的最小值为,故选D.【题目点拨】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设大铅球的半径为,则,求出,由此能求出这个大铅球的表面积.【题目详解】解:设大铅球的半径为,

则,

解得,

∴这个大铅球的表面积

故答案为:.【题目点拨】本题考查球的表面积的求法,考查球的体积、表面积等基础知识,考查运算求解能力,是基础题.14、【解题分析】

根据并集运算法则计算得到答案.【题目详解】集合,若则故答案为:【题目点拨】本题考查了集合的并集运算,属于简单题.15、12【解题分析】分析:过点两点分别作准线的垂线,过点作的垂线,垂足为,在直角三角形中,求得,进而得直线的斜率为,所以直线的方程,联立方程组,求得点的坐标,即可求得答案.详解:过点两点分别作准线的垂线,过点作的垂线,垂足为,设,则,因为,所以,在直角三角形中,,,所以,所以直线的斜率为,所以直线的方程为,将其代入抛物线的方程可得,解得,所以点,又由,所以所以.点睛:本题主要考查了主要了直线与抛物线的位置关系的应用问题,同时涉及到共线向量和解三角形的知识,解答本题的关键是利用抛物线的定义作出直角三角形,确定直线的斜率,得出直线的方程,着重考查了数形结合思想和推理与运算能力.16、【解题分析】

由复数模的几何意义及椭圆的定义列出不等式求解。【题目详解】表示复数对应的点到和对应的点的距离之和为2,它的轨迹是椭圆,则,∵,∴,。故答案为:。【题目点拨】本题考查复数模的几何意义,考查椭圆的定义。到两定点的距离之和为常数的动点轨迹是椭圆时,有一要求就是两定点间的距离小于这个常数。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】试题分析:(1)列出所有可能的事件,结合古典概型公式可得满足题意的概率值为;(2)利用题意画出概率空间,结合几何概型公式可得满足题意的概率值为.试题解析:(Ⅰ)当a∈{0,1,2,3,4,5},b∈{0,1,2}时,共可以产生6×3=18个一元二次方程.若事件A发生,则a2-4b2≥0,即|a|≥2|b|.又a≥0,b≥0,所以a≥2b.从而数对(a,b)的取值为(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(4,2),(5,0),(5,1),(5,2),共12组值.所以P(A)=.(Ⅱ)据题意,试验的全部结果所构成的区域为D={(a,b)|0≤a≤5,0≤b≤2},构成事件A的区域为A={(a,b)|0≤a≤5,0≤b≤2,a≥2b}.在平面直角坐标系中画出区域A、D,如图,其中区域D为矩形,其面积S(D)=5×2=10,区域A为直角梯形,其面积S(A)=.所以P(A)=.18、(I),;(II).【解题分析】

(I)曲线C的参数方程消去参数,能求出曲线C的普通方程;由直线l的极坐标方程,能求出直线l的直角坐标方程.(II)在曲线C上任取一点利用点到直线的距离公式能求出曲线C上的点到直线l的最小距离.【题目详解】(I)曲线的普通方程为,直线的直角坐标方程为.(II)设曲线上的点的坐标为,则点到直线的距离,当时,取得最大值,曲线上的点到直线的距离的最大值为.【题目点拨】本题考查曲线的普通方程和直线的直角坐标方程的求法,考查曲线上的点到直线的最小距离的求法,考查参数方程、直角坐标方程、极坐标方程互化公式的应用,考查运算求解能力、转化化归思想,是中档题.19、(1)见解析(2)【解题分析】

(1)根据不等式的特征,分,,,构造,研究其单调性即可.(2)将当时,恒成立,转化为时,恒成立,当时,显然成立,当且时,转化为,,利用(1)的结论求解.【题目详解】(1)当时,原不等式左边与右边相等,当时,原不等式,等价于,令,所以,所以在上递增,,所以,当时,原不等式,等价于,令,所以,所以在上递增,,所以,综上:当时,;(2)因为当时,恒成立,所以当时,恒成立,当时,显然成立,当且时,恒成立,由(1)知当且时,,所以,所以.实数的取值范围是.【题目点拨】本题主要考查导数于函数的单调性研究不等式恒成立问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.20、(1);(2)见解析【解题分析】

(1)使用零点分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论