2024届广西壮族自治区钦州市高二数学第二学期期末经典模拟试题含解析_第1页
2024届广西壮族自治区钦州市高二数学第二学期期末经典模拟试题含解析_第2页
2024届广西壮族自治区钦州市高二数学第二学期期末经典模拟试题含解析_第3页
2024届广西壮族自治区钦州市高二数学第二学期期末经典模拟试题含解析_第4页
2024届广西壮族自治区钦州市高二数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西壮族自治区钦州市高二数学第二学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,则其导函数的图象大致是()A.B.C.D.2.由曲线,直线,和轴所围成平面图形的面积为()A. B. C. D.3.随机变量的分布列如右表,若,则()012A. B. C. D.4.“,”的否定是A., B.,C., D.,5.“”是“复数在复平面内对应的点在第一象限”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有()A.5种 B.6种 C.7种 D.8种7.若直线和椭圆恒有公共点,则实数的取值范围是()A. B. C. D.8.双曲线的离心率等于2,则实数a等于()A.1 B. C.3 D.69.集合,那么()A. B. C. D.10.已知α,β是相异两个平面,m,n是相异两直线,则下列命题中正确的是()A.若m∥n,m⊂α,则n∥α B.若m⊥α,m⊥β,则α∥βC.若m⊥n,m⊂α,n⊂β,则α⊥β D.若α∩β=m,n∥m,则n∥β11.王老师在用几何画板同时画出指数函数()与其反函数的图象,当改变的取值时,发现两函数图象时而无交点,并且在某处只有一个交点,则通过所学的导数知识,我们可以求出当函数只有一个交点时,的值为()A. B. C. D.12.用数学归纳法证明:,第二步证明由到时,左边应加()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.关于圆周率,祖冲之的贡献有二:①;②用作为约率,作为密率,其中约率与密率提出了用有理数最佳逼近实数的问题.约率可通过用连分数近似表示的方法得到,如:,舍去0.0625135,得到逼近的一个有理数为,类似地,把化为连分数形式:(m,n,k为正整数,r为0到1之间的无理数),舍去r得到逼近的一个有理数为__________.14.已知变量,满足约束条件,设的最大值和最小值分别是和,则__________.15.已知函数,当(e为自然常数),函数的最小值为3,则的值为_____________.16.已知是抛物线上的一点,过点的切线方程的斜率可通过如下方式求得在两边同时求导,得:,则,所以过的切线的斜率.试用上述方法求出双曲线在处的切线方程为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如下表,数学期望.(1)求a和b的值;(2)某同学连续玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.X036Pab18.(12分)已知等差数列的前n项和为,各项为正的等比数列的前n项和为,,,.(1)若,求的通项公式;(2)若,求19.(12分)已知函数,.(1)讨论的单调性;(2)若有两个零点,求实数的取值范围.20.(12分)如图,正四棱柱的底面边长,若异面直线与所成角的大小为,求正四棱柱的体积.21.(12分)在中,内角所对的边分别为,且.(1)求角;(2)若,的面积为,求的值.22.(10分)已知复数,且为纯虚数.(1)求复数;(2)若,求复数的模.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:,为偶函数,当且时,或,所以选择C。考点:1.导数运算;2.函数图象。2、B【解题分析】

利用定积分表示面积,然后根据牛顿莱布尼茨公式计算,可得结果.【题目详解】,故选:B【题目点拨】本题主要考查微积分基本定理,熟练掌握基础函数的导函数以及牛顿莱布尼茨公式,属基础题.3、B【解题分析】分析:根据题目条件中给出的分布列,可以知道和之间的关系,根据期望为,又可以得到一组关系,这样得到方程组,解方程组得到的值.进而求得.详解:根据题意,解得则故选B.点睛:本题考查期望、方差和分布列中各个概率之间的关系,属基础题.4、D【解题分析】

通过命题的否定的形式进行判断.【题目详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【题目点拨】本题考查全称命题的否定,属基础题.5、C【解题分析】

根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【题目详解】若复数在复平面内对应的点在第一象限,则解得,故“”是“复数在复平面内对应的点在第一象限”的充要条件.故选C.【题目点拨】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.6、B【解题分析】由分步计数原理得,可选方式有2×3=6种.故选B.考点:分步乘法计数原理.7、B【解题分析】

根据椭圆1(b>0)得出≠3,运用直线恒过(0,2),得出1,即可求解答案.【题目详解】椭圆1(b>0)得出≠3,∵若直线∴直线恒过(0,2),∴1,解得,故实数的取值范围是故选:B【题目点拨】本题考查了椭圆的几何性质,直线与椭圆的位置关系,属于中档题.8、A【解题分析】

利用离心率的平方列方程,解方程求得的值.【题目详解】由可得,从而选A.【题目点拨】本小题主要考查已知双曲线的离心率求参数,考查方程的思想,属于基础题.9、D【解题分析】

把两个集合的解集表示在数轴上,可得集合A与B的并集.【题目详解】把集合A和集合B中的解集表示在数轴上,如图所示,则A∪B={x|-2<x<3}故选A.【题目点拨】本题考查学生理解并集的定义掌握并集的运算法则,灵活运用数形结合的数学思想解决数学问题,属基础题.10、B【解题分析】

在A中,根据线面平行的判定判断正误;在B中,由平面与平面平行的判定定理得α∥β;在C中,举反例即可判断判断;在D中,据线面平行的判定判断正误;【题目详解】对于A,若m∥n,m⊂α,则n∥α或n⊂α,故A错;对于B,若m⊥α,m⊥β,则由平面与平面平行的判定定理得α∥β,故B正确;对于C,不妨令α∥β,m在β内的射影为m′,则当m′⊥n时,有m⊥n,但α,β不垂直,故C错误;对于D,若α∩β=m,n∥m,则n∥β或n⊂β,故D错.故选:B.【题目点拨】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.11、B【解题分析】

当指数函数与对数函数只有一个公共点时,则在该点的公切线的斜率相等,列出关于的方程.【题目详解】设切点为,则,解得:故选B.【题目点拨】本题考查导数的运算及导数的几何意义,考查数形结合思想的应用,要注意根据指数函数与对数函数图象的凹凸性,得到在其公共点处公切线的斜率相等.12、D【解题分析】

当成立,当时,写出对应的关系式,观察计算即可得答案.【题目详解】在第二步证明时,假设时成立,即左侧,则成立时,左侧,左边增加的项数是,故选:D.【题目点拨】本题考查数学归纳法,考查到成立时左边项数的变化情况,考查理解与应用的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】

利用题中的定义以及类比推理直接进行求解即可.【题目详解】舍去得到逼近的一个有理数为.故答案为:【题目点拨】本题考查了类比推理,解题的关键是理解题中的定义,属于基础题.14、【解题分析】

在平面直角坐标系内,画出不等式组所表示的平面区域,可以发现变量,都是正数,故令,这样根据的几何意义,可以求出的取值范围,利用表示出,利用函数的性质,可以求出的最值,最后计算出的值.【题目详解】在平面直角坐标系内,画出不等式组所表示的平面区域,如下图所示:从图中可知:变量,都是正数,令,它表示不等式组所表示的平面区域内的点与原点的连线的斜率,解方程组:,可得点,解方程组:,可得点,所以有,因此,,,故.【题目点拨】本题考查了不等式所表示的平面区域,考查了斜率模型,考查了数形结合思想.15、【解题分析】

求出导函数,由导函数求出极值,当极值只有一个时也即为最值.【题目详解】,,当时,则,在上是减函数,,(舍去).当时,当时,,递减,当时,,递增.∴,,符合题意.故答案为.【题目点拨】本题考查由导数研究函数的最值.解题时求出导函数,利用导函数求出极值,如果极值有多个,还要与区间端点处函数值比较大小得最值,如果在区间内只有一个极值,则这个极值也是相应的最值.16、【解题分析】分析:结合题中的方法类比求解切线方程即可.详解:用类比的方法对两边同时求导得,,∴切线方程为,整理为一般式即:.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)分布列见解析,.【解题分析】分析:(1)根据分布列的性可知所有的概率之和为1然后再根据期望的公式得到第二个方程联立求解即可;(2)根据二项分布求解即可.详解:(1)因为,所以,即.①又,得.②联立①,②解得,.(2),依题意知,故,,,.故的概率分布为的数学期望为.点睛:考查分布列的性质,二项分布,认真审题,仔细计算是解题关键,属于基础题.18、(1),(2)【解题分析】

(1)首先设出等差数列的公差与等比数列的公比,根据题中所给的式子,得到关于与的等量关系式,解方程组求得结果,之后根据等比数列的通项公式写出结果即可;(2)根据题中所给的条件,求得其公比,根据条件,作出取舍,之后应用公式求得结果.【题目详解】(1)设的公差为d,的公比为q,由得d+q=3,由得2d+q2=6,解得d=1,q=2.所以的通项公式为;(2)由得q2+q-20=0,解得q=-5(舍去)或q=4,当q=4时,d=-1,则S3=-6。【题目点拨】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式与求和公式,等比数列的通项公式与求和公式,正确理解与运用公式是解题的关键,注意对所求的结果进行正确的取舍.19、(1)当a≤0,在(0,2)上单调递增,在(2,+∞)递减;当,在(0,2)和上单调递增,在(2,)递减;当a=,在(0,+∞)递增;当a>,在(0,)和(2,+∞)上单调递增,在(,2)递减;(2).【解题分析】

(1)求出,分四种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)由(1)知当时,单调递增区间为,单调递减区间为,又,取,可证明,有两个零点等价于,得,可证明,当时与当且时,至多一个零点,综合讨论结果可得结论.【题目详解】(1)的定义域为,,(i)当时,恒成立,时,在上单调递增;时,在上单调递减.(ii)当时,由得,(舍去),①当,即时,恒成立,在上单调递增;②当,即时,或,恒成立,在上单调递增;时,恒成立,在上单调递减.③当,即时,或时,恒成立,在单调递增,时,恒成立,在上单调递减.综上,当时,单调递增区间为,单调递减区间为;当时,单调递增区间为,无单调递减区间为;当时,单调递增区间为,单调递减区间为.(2)由(1)知当时,单调递增区间为,单调递减区间为,又,取,令,则在成立,故单调递增,,,有两个零点等价于,得,,当时,,只有一个零点,不符合题意;当时,在单调递增,至多只有一个零点,不符合题意;当且时,有两个极值,,记,,令,则,当时,在单调递增;当时,在单调递减,故在单调递增,时,,故,又,由(1)知,至多只有一个零点,不符合题意,综上,实数的取值范围为.【题目点拨】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值、零点等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.20、16【解题分析】分析:由正四棱柱的性质得,从而,进而,由此能求出正四棱柱的体积.详解:∵∴为与所成角且∵,∴点睛:本题主要考查异面直线所成的角、正四棱柱的性质以及棱柱的体积的公式,是中档题,解题时要认真审题,注意空间思维能力的培养.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角.21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论