




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市浦东新区市级名校数学高二下期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为,导函数在内的图象如图所示.则函数在内有几个极小值点()A.1 B.2 C.3 D.42.已知定义在上的函数,若是奇函数,是偶函数,当时,,则()A. B. C. D.3.已知定义在R上的函数f(x)的导函数为f'(x),若f(x)+fA.(-∞,0) B.(0,+∞) C.(-∞,1) D.(1,+∞)4.已知,则等于()A.-4 B.-2 C.1 D.25.设,均为实数,且,,,则()A. B. C. D.6.等差数列中,,为等差数列的前n项和,则()A.9 B.18 C.27 D.547.在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在、、三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有A.种 B.种C.种 D.种8.若函数在上是增函数,则的取值范围为()A. B. C. D.9.已知定义在上的奇函数,满足,当时,,若函数,在区间上有10个零点,则的取值范围是()A. B. C. D.10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1 C.-1 D.-311.集合,则()A. B. C. D.12.已知,用数学归纳法证明时.假设当时命题成立,证明当时命题也成立,需要用到的与之间的关系式是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在(2x2-1x14.在复平面内,复数1-i(i为虚数单位)的共轭复数对应的点位于第________象限.15.已知是定义在上的奇函数,当时,,则不等式的解集为_________.16.设集合,则集合中满足条件“”的元素个数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数满足(其中为虚数单位)(1)求;(2)若为纯虚数,求实数的值.18.(12分)已知函数对任意实数都有,且.(I)求的值,并猜想的表达式;(II)用数学归纳法证明(I)中的猜想.19.(12分)已知的三个顶点为,为的中点.求:(1)所在直线的方程;(2)边上中线所在直线的方程;(3)边上的垂直平分线的方程.20.(12分)已知椭圆的长轴长为,且椭圆与圆的公共弦长为(1)求椭圆的方程.(2)过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.21.(12分)如图,在中,角所对的边分别为,若.(1)求角的大小;(2)若点在边上,且是的平分线,,求的长.22.(10分)已知函数.(Ⅰ)求函数处的切线方程;(Ⅱ)时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
直接利用极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,再结合图像即可得出结论.【题目详解】因为极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,由图得:导函数值先负后正的点只有一个,故函数在内极小值点的个数是1.故选:A【题目点拨】本题考查了极小值点的概念,需熟记极小值点的定义,属于基础题.2、A【解题分析】
根据是偶函数判出是函数的对称轴,结合是奇函数可判断出函数是周期为的周期函数,由此求得的值.【题目详解】由于是偶函数,所以函数的一条对称轴为,由于函数是奇函数,函数图像关于原点对称,故函数是周期为的周期函数,故,故选A.【题目点拨】本小题主要考查函数的奇偶性、考查函数的对称性、考查函数的周期性,考查函数值的求法,属于基础题.3、B【解题分析】
不等式的exfx<1的解集等价于函数g(x)=exf(x)图像在y=1下方的部分对应的x的取值集合,那就需要对函数g(x)=exf(x)的性质进行研究,将fx+f'x【题目详解】解:令g(x)=因为f所以,(故g故gx在R又因为f所以,g所以当x>0,gx<1,即e故选B.【题目点拨】不等式问题往往可以转化为函数图像问题求解,函数图像问题有时借助函数的性质(奇偶性、单调性等)进行研究,有时还需要构造新的函数.4、D【解题分析】
首先对f(x)求导,将1代入,求出f′(1)的值,化简f′(x),最后将x=3代入即可.【题目详解】因为f′(x)=1x+1f′(1),令x=1,可得f′(1)=1+1f′(1),∴f′(1)=﹣1,∴f′(x)=1x+1f′(1)=1x﹣4,当x=3,f′(3)=1.故选:D【题目点拨】本题考查导数的运用,求出f′(1)是关键,是基础题.5、B【解题分析】分析:将题目中方程的根转化为两个函数图像的交点的横坐标的值,作出函数图像,根据图像可得出的大小关系.详解:在同一平面直角坐标系中,分别作出函数的图像由图可知,故选B.点睛:解决本题,要注意①方程有实数根②函数图像与轴有交点③函数有零点三者之间的等价关系,解决此类问题时,有时候采用“数形结合”的策略往往能起到意想不到的效果.6、A【解题分析】
由已知结合等差数列的性质求得a5,再由考查等差数列的前n项和公式求S2.【题目详解】在等差数列{an}中,由a2+a5+a8=3,得3a5=3,即a5=2.∴S2.故选:A.【题目点拨】本题考查等差数列的性质,考查等差数列的前n项和,是基础题.7、D【解题分析】
根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案.【题目详解】根据题意,分2步进行分析:
①、五个参会国要在a、b、c三家酒店选择一家,且这三家至少有一个参会国入住,
∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2
当按照1、1、3来分时共有C53=10种分组方法;
当按照1、2、2来分时共有种分组方法;
则一共有种分组方法;
②、将分好的三组对应三家酒店,有种对应方法;
则安排方法共有种;
故选D.【题目点拨】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.8、D【解题分析】
在上为增函数,可以得到是为增函数,时是增函数,并且时,,利用关于的三个不等式求解出的取值范围.【题目详解】由题意,在上为增函数,则,解得,所以的取值范围为.故选:D【题目点拨】本题主要考查分段函数的单调性以及指数函数和一次函数的单调性,考查学生的理解分析能力,属于基础题.9、A【解题分析】
由得出函数的图象关于点成中心对称以及函数的周期为,由函数为奇函数得出,并由周期性得出,然后作出函数与函数的图象,列举前个交点的横坐标,结合第个交点的横坐标得出实数的取值范围.【题目详解】由可知函数的图象关于点成中心对称,且,所以,,所以,函数的周期为,由于函数为奇函数,则,则,作出函数与函数的图象如下图所示:,则,于是得出,,由图象可知,函数与函数在区间上从左到右个交点的横坐标分别为、、、、、、、、、,第个交点的横坐标为,因此,实数的取值范围是,故选A.【题目点拨】本题考查方程的根与函数的零点个数问题,一般这类问题转化为两个函数图象的交点个数问题,在画函数的图象时,要注意函数的奇偶性、对称性、周期性对函数图象的影响,属于难题.10、D【解题分析】
∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=1.∴f(-1)=-f(1)=-1.故选D.11、B【解题分析】,,故选B.12、C【解题分析】
分别根据已知列出和,即可得两者之间的关系式.【题目详解】由题得,当时,,当时,,则有,故选C.【题目点拨】本题考查数学归纳法的步骤表示,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、240【解题分析】
直接利用二项式展开式的通项公式得到答案.【题目详解】(2当r=2时,展开式为:C6含x7的项的系数是故答案为240【题目点拨】本题考查了二项式定理,属于基础题型.14、一【解题分析】
根据共轭复数的概念,即可得到答案.【题目详解】的共轭复数是,在复平面对应的点为,故位于第一象限.【题目点拨】本题主要考查共轭复数的概念,难度很小.15、【解题分析】
求导根据导数判断函数是单调递增的,再利用解得答案.【题目详解】当时,是定义在上的奇函数是在上单调递增故答案为【题目点拨】本题考查了函数的奇偶性,单调性,判断函数在上单调递增是解题的关键.16、58024【解题分析】
依题意得的取值是1到10的整数,满足的个数等于总数减去和的个数.【题目详解】集合中共有个元素,其中的只有1个元素,的有个元素,故满足条件“”的元素个数为56049-1-1024=58024.【题目点拨】本题考查计数原理,方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)设,可得,解得从而可得结果;(2)由(1)知,利用为纯虚数可得,从而可得结果.【题目详解】(1)设,由于则:解得:(2)由(1)知又为纯虚数,【题目点拨】本题主要考查的是复数的分类、复数的乘法、除法运算,属于中档题.解题时一定要注意和以及运算的准确性,否则很容易出现错误.18、(I);(II)证明见解析.【解题分析】
(I)根据的值猜想的表达式;(II)分和两步证明.【题目详解】(I),,,,猜想.(II)证明:当时,,猜想成立;假设时,猜想成立,即,则当时,,即当时猜想成立.综上,对于一切均成立.【题目点拨】本题考查抽象函数求值与归纳猜想.19、(1)x+1y-4=2;(1)1x-3y+6=2;(3)y=1x+1.【解题分析】
(1)直线方程的两点式,求出所在直线的方程;(1)先求BC的中点D坐标为(2,1),由直线方程的截距式求出AD所在直线方程;(3)求出直线BC的斜率,由两直线垂直的条件求出直线DE的斜率,再由斜截式求出DE的方程【题目详解】(1)因为直线BC经过B(1,1)和C(-1,3)两点,由两点式得BC的方程为,即x+1y-4=2.(1)设BC中点D的坐标为(x,y),则x==2,y==1.BC边的中线AD过点A(-3,2),D(2,1)两点,由截距式得AD所在直线方程为,即1x-3y+6=2.(3)BC的斜率,则BC的垂直平分线DE的斜率k1=1,由斜截式得直线DE的方程为y=1x+1.20、(1)(2)【解题分析】试题分析:(1)由长轴长可得值,公共弦长恰为圆直径,可知椭圆经过点,利用待定系数法可得椭圆方程;(2)可令直线的解析式为,设,的中点为,将直线方程与椭圆方程联立,消去,利用根与系数的关系可得,由等腰三角形中,可得,得出中.由此可得点的横坐标的范围.试题解析:(1)由题意可得,所以.由椭圆与圆:的公共弦长为,恰为圆的直径,可得椭圆经过点,所以,解得.所以椭圆的方程为.(2)直线的解析式为,设,的中点为.假设存在点,使得为以为底边的等腰三角形,则.由得,故,所以,.因为,所以,即,所以.当时,,所以;当时,,所以.综上所述,在轴上存在满足题目条件的点,且点的横坐标的取值范围为.点睛:本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系,基本不等式,及韦达定理的应用.解析几何大题的第一问一般都是确定曲线的方程,常见的有求参数确定方程和求轨迹确定方程,第二问一般为直线与椭圆的位置关系,解决此类问题一般需要充分利用数形结合的思想转化给出的条件,可将几何条件转化为代数关系,从而建立方程或者不等式来解决.21、(1);(2).【解题分析】试题分析:(1)利用正弦定理将边化角,根据三角恒等变换即可得出,从而得出的大小;(2)利用余弦定理求出,根据是的平分线,可得,故而可求得结果.试题解析:(1)在中,∵,∴由正弦定理得,∵,∴,∵,∴.(2)在中,由余弦定理得,即,解得,或(负值,舍去)∵是的平分线,,∴,∴.22、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)对函数求导,再令x=1,可求得,回代可知,由导数可求得切线方程。(Ⅱ)由,令由导数可知,在时恒成立。下证,所以。【题目详解】(Ⅰ)函数的定义域为因为,所以,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉米加工与农业产业链优化考核试卷
- 玻璃成分分析与调整考核试卷
- 航空航天器推进剂供给系统考核试卷
- 篷布制造与智能化生产流程的改进考核试卷
- 景区旅游安全生产责任追究制度考核试卷
- 船舶货运与跨境电商的融合考核试卷
- 玻璃水刀切割技术考核试卷
- 羊毛混纺纱线生产工艺试题考核试卷
- 影视剧服装定制设备租赁与知识产权保护合同
- 电商仓储物流服务及仓储设施租赁及仓储管理合同
- JT-T 1495-2024 公路水运危险性较大工程专项施工方案编制审查规程
- 幸福心理学智慧树知到期末考试答案章节答案2024年浙江大学
- 个人工劳务分包合同
- 5月8日世界微笑日微笑的力量生活中保持微笑宣传课件
- 2024年四川省自然资源投资集团有限责任公司招聘笔试参考题库附带答案详解
- 2022智慧健康养老服务与管理专业人才培养调研报告
- 酒店网评分提升方案
- 石油化工设备维护检修规程设备完好标准SHS010012004-副本
- 妊娠合并垂体侏儒的护理查房
- 厨房消防安全培训课件
- 全国工会财务知识竞赛题库及答案
评论
0/150
提交评论