2024届湖北省武汉市部分重点中学数学高二下期末考试模拟试题含解析_第1页
2024届湖北省武汉市部分重点中学数学高二下期末考试模拟试题含解析_第2页
2024届湖北省武汉市部分重点中学数学高二下期末考试模拟试题含解析_第3页
2024届湖北省武汉市部分重点中学数学高二下期末考试模拟试题含解析_第4页
2024届湖北省武汉市部分重点中学数学高二下期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市部分重点中学数学高二下期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)2.已知函数是定义在上的偶函数,并且满足,当时,,则()A. B. C. D.3.函数在区间上的最大值为()A.2 B. C. D.4.下列几种推理中是演绎推理的序号为()A.由,,,…猜想B.半径为的圆的面积,单位圆的面积C.猜想数列,,,…的通项为D.由平面直角坐标系中,圆的方程为推测空间直角坐标系中球的方程为5.已知函数,若与的图象上分别存在点、,使得、关于直线对称,则实数的取值范围是()A. B. C. D.6.将函数的图象沿轴向右平移个单位后,得到一个偶函数的图象,则的取值不可能是()A. B. C. D.7.若均为单位向量,且,则的最小值为()A. B.1 C. D.8.已知函数,且,其中是的导函数,则()A. B. C. D.9.函数的定义城是()A. B. C. D.10.已知函数存在零点,且,则实数的取值范围是()A. B.C. D.11.一工厂生产某种产品的生产量(单位:吨)与利润(单位:万元)的部分数据如表所示:从所得的散点图分析可知,与线性相关,且回归方程为,则()A. B. C. D.12.已知函数,将其图象向右平移个单位长度后得到函数的图象,若函数为偶函数,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面向量,满足||=2,||=3,-=(,),则|+|=.14.设全集,集合,,则_.15.的展开式中含项的系数为_________.16.的展开式中的系数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中国已经成为全球最大的电商市场,但是实体店仍然是消费者接触商品和品牌的重要渠道.某机构随机抽取了年龄介于10岁到60岁的消费者200人,对他们的主要购物方式进行问卷调查.现对调查对象的年龄分布及主要购物方式进行统计,得到如下图表:主要购物方式年龄阶段网络平台购物实体店购物总计40岁以下7540岁或40岁以上55总计(1)根据已知条件完成上述列联表,并据此资料,能否在犯错误的概率不超过的前提下,认为消费者主要的购物方式与年龄有关?(2)用分层抽样的方法从通过网络平台购物的消费者中随机抽取8人,然后再从这8名消费者中抽取5名进行答谢.设抽到的消费者中40岁以下的人数为,求的分布列和数学期望.参考公式:,其中.临界值表:18.(12分)在区间上任取一个数记为a,在区间上任取一个数记为b.若a,,求直线的斜率为的概率;若a,,求直线的斜率为的概率.19.(12分)在平面直角坐标系中,圆为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线l的极坐标方程为.分别求圆的极坐标方程和曲线的直角坐标方程;设直线交曲线于两点,曲线于两点,求的长;为曲线上任意一点,求的取值范围.20.(12分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.21.(12分)为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛.从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,,,,,,到如图所示的频率分布直方图.(1)求图中的值及样本的中位数与众数;(2)若从竞赛成绩在与两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.(3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖,得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.22.(10分)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.表1:甲套设备的样本的频数分布表质量指标值[95,100)[100,105)[105,110)[110,115)[115,120)[120,125]频数14192051图1:乙套设备的样本的频率分布直方图(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;甲套设备乙套设备合计合格品不合格品合计(2)根据表1和图1,对两套设备的优劣进行比较;(3)将频率视为概率.若从甲套设备生产的大量产品中,随机抽取3件产品,记抽到的不合格品的个数为,求的期望.附:P(K2≥k0)0.150.100.0500.0250.010k02.0722.7063.8415.0246.635.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.2、D【解题分析】

先由题得出函数的周期,再将变量调节到范围内进行求解.【题目详解】因为,所令,则,所以可得,即,所以函数的周期为,则,又因为函数是定义在上的偶函数,且当时,所以故选D【题目点拨】本题考查函数的基本性质,包括周期性,奇偶性,解题的关键是先求出函数的周期,属于一般题.3、D【解题分析】

求出导函数,利用导数确定函数的单调性,从而可确定最大值.【题目详解】,当时,;时,,∴已知函数在上是增函数,在上是减函数,.故选D.【题目点拨】本题考查用导数求函数的最值.解题时先求出函数的导函数,由导函数的正负确定函数的增减,从而确定最值,在闭区间的最值有时可能在区间的端点处取得,要注意比较.4、B【解题分析】

根据演绎推理、归纳推理和类比推理的概念可得答案.【题目详解】A.是由特殊到一般,是归纳推理.B.是由一般到特殊,是演绎推理.C.是由特殊到一般,是归纳推理.D.是由一类事物的特征,得到另一类事物的特征,是类比推理.故选:B【题目点拨】本题考查对推理类型的判断,属于基础题.5、A【解题分析】

先求得关于对称函数,由与图像有公共点来求得实数的取值范围.【题目详解】设函数上一点为,关于对称点为,将其代入解析式得,即.在同一坐标系下画出和的图像如下图所示,由图可知,其中是的切线.由得,而,只有A选项符合,故选A.【题目点拨】本小题主要考查函数关于直线对称函数解析式的求法,考查两个函数有交点问题的求解策略,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.6、C【解题分析】试题分析:将其向右平移个单位后得到:,若为偶函数必有:,解得:,当时,D正确,时,B正确,当时,A正确,综上,C错误.考点:1.函数的图像变换;2.函数的奇偶性.7、A【解题分析】

∴则当与同向时最大,最小,此时=,所以=-1,所以的最小值为,故选A点睛:本题考查平面向量数量积的性质及其运算律,考查向量模的求解,考查学生分析问题解决问题的能力,求出,表示出,由表达式可判断当与同向时,最小.8、A【解题分析】分析:求出原函数的导函数,然后由f′(x)=2f(x),求出sinx与cosx的关系,同时求出tanx的值,化简要求解的分式,最后把tanx的值代入即可.详解:因为函数f(x)=sinx-cosx,所以f′(x)=cosx+sinx,由f′(x)=2f(x),得:cosx+sinx=2sinx-2cosx,即3cosx=sinx,所以.所以=.故答案为A.点睛:(1)本题主要考查求导和三角函数化简求值,意在考查学生对这些知识的掌握水平和分析转化计算能力.(2)解答本题的关键是=.这里利用了“1”的变式,1=.9、C【解题分析】

根据对数的真数大于零这一原则得出关于的不等式,解出可得出函数的定义域.【题目详解】由题意可得,解得,因此,函数的定义域为,故选C.【题目点拨】本题考查对数型函数的定义域的求解,求解时应把握“真数大于零,底数大于零且不为”,考查计算能力,属于基础题.10、D【解题分析】

令,可得,设,求得导数,构造,求得导数,判断单调性,即可得到的单调性,可得的范围,即可得到所求的范围.【题目详解】由题意,函数,令,可得,设,则,由的导数为,当时,,则函数递增,且,则在递增,可得,则,故选D.【题目点拨】本题主要考查了函数的零点问题解法,注意运用转化思想和参数分离,考查构造函数法,以及运用函数的单调性,考查运算能力,属于中档题.11、C【解题分析】

根据表格中的数据计算出和,再将点的坐标代入回归直线方程可求出实数的值.【题目详解】由题意可得,,由于回归直线过样本中心点,则有,解得,故选:C.【题目点拨】本题考查利用回归直线方程求原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.12、B【解题分析】

由平移变换得到,由偶函数的性质得到,从而求.【题目详解】由题意得:,因为为偶函数,所以函数的图象关于对称,所以当时,函数取得最大值或最小值,所以,所以,解得:,因为,所以当时,,故选B.【题目点拨】平移变换、伸缩变换都是针对自变量而言的,所以函数向右平移个单位长度后得到函数,不能错误地得到.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由已知得:,可得.再利用数量积运算性质即可得出.【题目详解】由已知得:,..【题目点拨】本题主要考查了向量的模的公式应用,意在考查学生的数学运算能力.14、【解题分析】

利用已知求得:,即可求得:,再利用并集运算得解.【题目详解】由可得:或所以所以所以故填:【题目点拨】本题主要考查了补集、并集的运算,考查计算能力,属于基础题.15、.【解题分析】

计算出二项展开式通项,令的指数为,求出参数的值,再将参数的值代入二项展开式通项可得出项的系数.【题目详解】的展开式通项为,令,得,因此,的展开式中含项的系数为,故答案为:.【题目点拨】本题考查二项式指定项的系数的计算,解题的关键就是利用二项展开式通项进行计算,考查运算求解能力,属于中等题.16、56【解题分析】

利用二项式展开式的通项公式,即可容易求得结果.【题目详解】的展开式的通项公式为.令,解得,故其系数为.故答案为:.【题目点拨】本题考查利用二项式通项公式求指定项系数,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)可以在犯错误的概率不超过的前提下,认为消费者主要的购物方式与年龄有关;(2)见解析【解题分析】

(1)先由频率分布直方图得到列联表,再根据公式计算得到卡方值,进而作出判断;(2)消费者中40岁以下的人数为,可能取值为3,4,5,求出相应的概率值,再得到分布列和期望.【题目详解】(1)根据直方图可知40岁以下的消费者共有人,40或40岁以上的消费者有80人,故根据数据完成列联表如下:主要购物方式年龄阶段网络平台购物实体店购物总计40岁以下754512040岁或40岁以上255580总计100100200依题意,的观测值故可以在犯错误的概率不超过的前提下,认为消费者主要的购物方式与年龄有关.(2)从通过网络平台购物的消费者中随机抽取8人,其中40岁以下的有6人,40岁或40岁以上的有2人,从这8名消费者抽取5名进行答谢,设抽到的消费者中40岁以下的人数为,则的可能取值为3,4,5且,,,则的分布列为:345故的数学期望为3.75.【题目点拨】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.18、(1);(2).【解题分析】

,2,3,4,1,6,,2,3,4,1,基本事件总数,再列出满足条件的基本事件有6个,由古典概型概率计算公式求解;有序实数对满足,而满足直线的斜率为,即,画出图形,由测度比是面积比得答案.【题目详解】解:在区间上任取一个数记为a,在区间上任取一个数记为b,a,,,2,3,4,1,6,,2,3,4,1.基本事件总数,直线的斜率为,即,也就是,满足条件的基本事件有6个,分别是:,,,,,,直线的斜率为的概率;在区间上任取一个数记为a,在区间上任取一个数记为b,a,,有序实数对满足,而满足直线的斜率为,即,如图:,.直线的斜率为的概率.【题目点拨】本题考查概率的求法,注意列举法和几何概型的合理运用,是中档题.19、(1),;(2);(3).【解题分析】

消去参数得到普通方程,利用这个是可得到的直角坐标,直接利用转换关系对极坐标方程进行转换可得到曲线的极坐标方程;利用方程组和两点间的距离公式分别求出,相减求出结果.利用向量的数量积和三角函数关系式的恒等变换及正弦型函数的性质可求出结果.【题目详解】圆为参数,转换为直角坐标方程为:,,利用转换为极坐标方程为:,即.曲线的极坐标方程为,转化为,利用整理得:.直线l的极坐标方程为.转换为直角坐标方程为:,由于直线交曲线于两点,则:,解得:或,所以:,同理:直线交曲线于两点,则:,解得:或.所以:,所以:.由于,则,P为曲线上任意一点,,则:,所以,的范围是.【题目点拨】本题考查的知识要点:参数方程化为直角坐标方程,直角坐标方程与极坐标方程之间的转换,平面向量的数量积公式的应用,两点间距离公式的应用,三角函数关系式的恒等变变换及辅助角公式与角函数的有界性,意在考查综合应用所学知识解答问题的能力,属于中档题.20、(1);(2)【解题分析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.21、(1)0.06;87.5;87.5;(2);(3)详见解析【解题分析】

(1)根据小矩形的面积之和等于1,列出方程,求得的值,根据中位数定义估计中位数的范围,在列出方程求解中位数,再根据众数的定义,即可求解.(2)计算两组的人数,再计算抽取的两人在同一组的概率,即可求解;(3)根据题意,得到随机变量服从二项分布,再利用二项分布的期望公式,即可求解.【题目详解】(1)由频率分布直方图可知,解得,可知样本的中位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论