湖南衡阳县2024届高二数学第二学期期末监测试题含解析_第1页
湖南衡阳县2024届高二数学第二学期期末监测试题含解析_第2页
湖南衡阳县2024届高二数学第二学期期末监测试题含解析_第3页
湖南衡阳县2024届高二数学第二学期期末监测试题含解析_第4页
湖南衡阳县2024届高二数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南衡阳县2024届高二数学第二学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在空间直角坐标系中有直三棱柱,且,则直线与直线夹角的余弦值为()A. B. C. D.2.甲乙丙丁四人参加数学竞赛,其中只有一位获奖.有人走访了四人,甲说:“乙、丁都未获奖.”乙说:“是甲或丙获奖.”丙说:“是甲获奖.”丁说:“是乙获奖.”四人所说话中只有两位是真话,则获奖的人是()A.甲 B.乙 C.丙 D.丁3.已知函数,关于的方程有三个不等的实根,则的取值范围是()A. B.C. D.4.已知,为锐角,且,若,则的最大值为()A. B. C. D.5.下列四个命题中,其中错误的个数是()①经过球面上任意两点,可以作且只可以作一个大圆;②经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;③球的面积是它大圆面积的四倍;④球面上两点的球面距离,是这两点所在截面圆上,以这两点为端点的劣弧的长.A.0 B.1 C.2 D.36.已知命题,命题,若为假命题,则实数的取值范围是()A. B.或 C. D.7.已知数列满足,,,设为数列的前项之和,则()A. B. C. D.8.给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称在D上存在二阶导函数,记,若在D上恒成立,则称在D上为凸函数.以下四个函数在上不是凸函数的是()A. B.C. D.9.以双曲线的焦点为顶点,离心率为的双曲线的渐近线方程是()A. B.C. D.10.已知曲线和曲线围成一个叶形图;则其面积为()A.1 B. C. D.11.在中,角,,所对的边分别为,,,且,,,,则()A.2 B. C. D.412.如图所示阴影部分是由函数、、和围成的封闭图形,则其面积是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.14.已知函数,则_________.15.已知i是虚数单位,若,则________16.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在的展开式中,第6项为常数项.求n的值;求展开式的所有项的系数之和;求展开式中所有的有理项.18.(12分)设函数.(1)求过点的切线方程;(2)若方程有3个不同的实根,求的取值范围。(3)已知当时,恒成立,求实数的取值范围.19.(12分)某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.(1)请估计学校1800名学生中,成绩属于第四组的人数;(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;(3)请根据频率分布直方图,求样本数据的众数、平均数.20.(12分)某高速公路收费站入口处的安全标识墩如图1所示.墩的上半部分是正四棱锥P﹣EFGH,下半部分是长方体ABCD﹣EFGH.图2、图3分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图;(2)求该安全标识墩的体积.21.(12分)已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点,设1)证明:PE⊥BC;2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.22.(10分)已知是定义在上的奇函数,且当时,.(Ⅰ)求的解析式;(Ⅱ)解不等式.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

设CA=2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos〈,〉=2、C【解题分析】

本题利用假设法进行解答.先假设甲获奖,可以发现甲、乙、丙所说的话是真话,不合题意;然后依次假设乙、丙、丁获奖,结合已知,选出正确答案.【题目详解】解:若是甲获奖,则甲、乙、丙所说的话是真话,不合题意;若是乙获奖,则丁所说的话是真话,不合题意;若是丙获奖,则甲乙所说的话是真话,符合题意;若是丁获奖,则四人所说的话都是假话,不合题意.故选C.【题目点拨】本题考查了的数学推理论证能力,假设法是经常用到的方法.3、B【解题分析】

利用导数讨论函数的性质后可得方程至多有两个解.因为有三个不同的解,故方程有两个不同的解,且,,最后利用函数的图像特征可得实数的取值范围.【题目详解】,当时,,在上为增函数;当时,,在上为减函数;所以的图像如图所示:又时,,又的值域为,所以当或时,方程有一个解,当时,方程有两个不同的解,所以方程即有两个不同的解,令,故,解得,故选B.【题目点拨】复合方程的解的个数问题,其实质就是方程组的解的个数问题,后者可先利用导数等工具刻画的图像特征,结合原来方程解的个数得到的限制条件,再利用常见函数的性质刻画的图像特征从而得到参数的取值范围.4、B【解题分析】

把代入等式中,进行恒等变形,用表示,最后利用基本不等式,求出的最大值.【题目详解】,.因为为锐角,且,所以,,,(当且仅当时取等号),所以,因此的最大值为,故本题选B.【题目点拨】本题考查了三角恒等变形,考查了两角差的正切公式,考查了应用基本不等式求代数式最值问题.5、C【解题分析】

结合球的有关概念:如球的大圆、球面积公式、球面距离等即可解决问题,对于球的大圆、球面积公式、球面距离等的含义的理解,是解决此题的关键.【题目详解】对于①,若两点是球的一条直径的端点,则可以作无数个球的大圆,故①错;

对于②三部分的面积都是,故②正确对于③,球面积=,是它大圆面积的四倍,故③正确;

对于④,球面上两点的球面距离,是这两点所在大圆上以这两点为端点的劣弧的长,故④错.

所以①④错误.

所以C选项是正确的.【题目点拨】本题考查球的性质,特别是求两点的球面距离,这两个点肯定在球面上,做一个圆使它经过这两个点,且这个圆的圆心在球心上,两点的球面距离对应的是这个圆两点之间的对应的较短的那个弧的距离.6、D【解题分析】试题分析:由,可得,由,可得,解得.因为为假命题,所以与都是假命题,若是假命题,则有,若是假命题,则由或,所以符合条件的实数的取值范围为,故选D.考点:命题真假的判定及应用.7、A【解题分析】

由可知数列为等差数列且公差为,然后利用等差数列求和公式代入计算即可.【题目详解】由可知数列为等差数列且公差为,所以故选.【题目点拨】本题主要考查等差数列的概念及求和公式,属基础题.8、D【解题分析】

对A,B,C,D四个选项逐个进行二次求导,判断其在上的符号即可得选项.【题目详解】若,则,在上,恒有;若,则,在上,恒有;若,则,在上,恒有;若,则.在上,恒有,故选D.【题目点拨】本题主要考查函数的求导公式,充分理解凸函数的概念是解题的关键,属基础题.9、D【解题分析】

由题求已知双曲线的焦点坐标,进而求出值即可得答案。【题目详解】由题可知双曲线的焦点坐标为,则所求双曲线的顶点坐标为,即,又因为离心率为,所以,解得,所以,即,所以渐近线方程是故选D【题目点拨】本题考查求双曲线的渐近线方程,解题的关键是判断出焦点位置后求得,属于简单题。10、D【解题分析】

先作出两个函数的图像,再利用定积分求面积得解.【题目详解】由题得函数的图像如图所示,联立得交点(1,1)所以叶形图面积为.故选:D【题目点拨】本题主要考查定积分的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.11、C【解题分析】

先利用正弦定理解出c,再利用的余弦定理解出b【题目详解】所以【题目点拨】本题考查正余弦定理的简单应用,属于基础题.12、B【解题分析】

根据定积分的几何意义得到阴影部分的面积。【题目详解】由定积分的几何意义可知:阴影部分面积故选B.【题目点拨】本题考查定积分的几何意义和积分运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】

利用点差法得到AB的斜率,结合抛物线定义可得结果.【题目详解】详解:设则所以所以取AB中点,分别过点A,B作准线的垂线,垂足分别为因为,,因为M’为AB中点,所以MM’平行于x轴因为M(-1,1)所以,则即故答案为2.【题目点拨】本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设,利用点差法得到,取AB中点,分别过点A,B作准线的垂线,垂足分别为,由抛物线的性质得到,进而得到斜率.14、1【解题分析】

利用分段函数的性质求解.【题目详解】解:∵,∴,,故答案为:1【题目点拨】本题考查函数值的求法,解题时要认真审题,注意分段函数的性质的灵活运用.15、【解题分析】由即答案为16、【解题分析】

几何体是一个圆柱,圆柱的底面是一个直径为1的圆,圆柱的高是1,圆柱的全面积包括三部分,上下底面圆的面积和侧面展开矩形的面积.【题目详解】由三视图知几何体是一个圆柱,圆柱的底面是一个直径为1的圆,圆柱的高是1,故圆柱的全面积是:.【题目点拨】本题考查三视图和圆柱的表面积,关键在于由三视图还原几何体.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(II);(III)有理项分别为,;.【解题分析】

在二项展开式的第六项的通项公式中,令的幂指数等于0,求出的值;在二项展开式中,令,可得展开式的所有项的系数之和;二项式的展开式的通项公式为,令为整数,可求出的值,即可求得展开式中所有的有理项.【题目详解】在的展开式中,第6项为

为常数项,,.在的展开式中,令,可得展开式的所有项的系数之和为.二项式的展开式的通项公式为,令为整数,可得,5,8,故有理项分别为,;.【题目点拨】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18、(1);(2);(3)【解题分析】

求导带入求出切线斜率,再利用点斜式写出切线。求出的单调区间,极值,则在极小值与极大值之间。参变分离,求最值。【题目详解】(1)设切点为切线过(2)对函数求导,得函数令,即,解得,或,即,解得,的单调递增区间是及,单调递减区间是当,有极大值;当,有极小值当时,直线与的图象有3个不同交点,此时方程有3个不同实根。实数的取值范围为(3)时,恒成立,也就是恒成立,令,则,的最小值为,【题目点拨】本题考查曲线上某点的切线方程,两方程的交点问题以及参变分离。属于中档题。19、人;(2)人;15.70.【解题分析】试题分析:(1)利用频率分布直方图能估计学校1800名学生中,成绩属于第四组的人数.(2)利用频率分布直方图能求出该样本在这次百米测试中成绩良好的人数.(3)根据频率分布直方图,能求出样本数据的众数、中位数.解析:学校1800名学生中,成绩属于第四组的人数人;(2)样本在这次百米测试中成绩良好的人数是:人;由图可知众数落在第三组,是,.20、(1)见解析(2)64000(cm3)【解题分析】

(1)由于墩的上半部分是正四棱锥P﹣EFGH,下半部分是长方体ABCD﹣EFGH,故其正视图与侧视图全等.(2)由三视图我们易得,底面为边长为40cm的正方形,长方体的高为20cm,棱锥高为60cm,代入棱柱和棱锥体积公式,易得结果.【题目详解】(1)该安全标识墩侧视图如图所示.(2)该安全标识墩的体积V=VP﹣EFGH+VABCD﹣EFGH40×40×60+40×40×20=64000(cm3).【题目点拨】根据三视图判断空间几何体的形状,进而求几何的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.21、(1)见解析;(2).【解题分析】分析:(1)以H为原点,HA,HB,HP所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论