2024届江苏省南京市溧水区三校数学高二第二学期期末经典试题含解析_第1页
2024届江苏省南京市溧水区三校数学高二第二学期期末经典试题含解析_第2页
2024届江苏省南京市溧水区三校数学高二第二学期期末经典试题含解析_第3页
2024届江苏省南京市溧水区三校数学高二第二学期期末经典试题含解析_第4页
2024届江苏省南京市溧水区三校数学高二第二学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市溧水区三校数学高二第二学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程确定出来x=2,类似地不难得到=()A. B.C. D.2.若函数,则()A.1 B. C.27 D.3.已知,则()A.11 B.12 C.13 D.144.椭圆的左、右焦点分别为,弦过,若的内切圆的周长为,两点的坐标分别为,,则()A. B. C. D.5.展开式中常数项为()A. B. C. D.6.已知是以为周期的偶函数,当时,,那么在区间内,关于的方程(且)有个不同的根,则的取值范围是()A. B. C. D.7.中,若,则该三角形一定是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形8.已知,则()A. B.3 C. D.9.设,,则“”是“”的()A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件10.若存在实数,,使不等式对一切正数都成立(其中为自然对数的底数),则实数的最小值是().A. B.4 C. D.211.下列选项错误的是()A.“”是“”的充分不必要条件.B.命题“若,则”的逆否命题是“若,则”C.若命题“”,则“”.D.若“”为真命题,则均为真命题.12.定义方程的实数根叫做函数的“新驻点”,如果函数的“新驻点”分别为那么的大小关系是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知满足约束条件若目标函数的最大值为7,则的最小值为_______.14.已知函数与的图象有且只有三个交点,则实数的取值范围为________.15.已知的展开式中项的系数是-35,则________.16.已知,则a与b的大小关系______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和为,且满足.(1)若为等比数列,求的值及数列的通项公式;(2)在(1)的条件下,设,求数列的前项和.18.(12分)据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.(1)求的值;(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.19.(12分)已知函数.(1)解不等式;(2)设,若对任意,存在,使得成立,求的取值范围.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)当时,求直线与曲线的普通方程;(2)若直线与曲线交于两点,直线的倾斜角范围为,点为直线与轴的交点,求的最小值.21.(12分)如图,在边长为的正方形中,点是的中点,点是的中点,点是上的点,且.将△AED,△DCF分别沿,折起,使,两点重合于,连接,.(Ⅰ)求证:;(Ⅱ)试判断与平面的位置关系,并给出证明.22.(10分)已知椭圆:的上顶点为,右顶点为,直线与圆相切于点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设椭圆的左、右焦点分别为、,过且斜率存在的直线与椭圆相交于,两点,且,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

根据已知求的例子,令,即,解方程即可得到的值.【题目详解】令,即,即,解得(舍),故故选:C【题目点拨】本题考查归纳推理,算术和方程,读懂题中整体代换的方法、理解其解答过程是关键,属于基础题.2、C【解题分析】

求导后代入可构造方程求得,从而得到,代入可求得结果.【题目详解】,,解得:,,.故选:.【题目点拨】本题考查导数值的求解问题,关键是能够明确为实数,其导数为零.3、B【解题分析】∵,∴,整理,得,;解得,或(不合题意,舍去);∴n的值为12.故选:B.4、A【解题分析】

设△ABF1的内切圆的圆心为G.连接AG,BG,GF1.设内切圆的半径为r,则1πr=π,解得r=.可得==•|F1F1|,即可得出.【题目详解】由椭圆=1,可得a=5,b=4,c==2.如图所示,设△ABF1的内切圆的圆心为G.连接AG,BG,GF1.设内切圆的半径为r,则1πr=π,解得r=.则==•|F1F1|,∴4a=|y1﹣y1|×1c,∴|y1﹣y1|==.故选C.【题目点拨】本题考查了椭圆的标准方程定义及其性质、三角形内切圆的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.5、D【解题分析】

求出展开式的通项公式,然后进行化简,最后让的指数为零,最后求出常数项.【题目详解】解:,令得展开式中常数项为,故选D.【题目点拨】本题考查了求二项式展开式中常数项问题,运用二项式展开式的通项公式是解题的关键.6、B【解题分析】

由已知,函数在区间的图象如图所示,直线y(且)表示过定点的直线,为使关于的方程(且)有个不同的根,即直线与函数的图象有4个不同的交点.结合图象可知,当直线介于直线和直线之间时,符合条件,故选.考点:函数的奇偶性、周期性,函数与方程,直线的斜率,直线方程.7、D【解题分析】

利用余弦定理角化边后,经过因式分解变形化简可得结论.【题目详解】因为,所以,所以,所以,所以,所以,所以或,所以或,所以三角形是等腰三角形或直角三角形.故选:D【题目点拨】本题考查了利用余弦定理角化边,考查了利用余弦定理判断三角形的形状,属于基础题.8、D【解题分析】

根据正弦的倍角公式和三角函数的基本关系式,化为齐次式,即可求解,得到答案.【题目详解】由题意,可得,故选D.【题目点拨】本题主要考查了正弦的倍角公式,以及三角函数的基本关系式的化简、求值,着重考查了推理与运算能力,属于基础题.9、C【解题分析】不能推出,反过来,若则成立,故为必要不充分条件.10、B【解题分析】

分别画出和的图象,依题意存在实数,,使不等式对一切正数都成立,要求参数的最小值,临界条件即为直线:恰为函数和的公切线,设函数上的切点,则,即转化为求,设函数的切点为,表示出切线方程,即可得到方程组,整理得到,令,求出令即可得解;【题目详解】解:分别画出和的图象,依题意存在实数,,使不等式对一切正数都成立,要求参数的最小值,临界条件即为直线:恰为函数和的公切线,设函数上的切点,,,所以,所以切线方程为,整理得,同时直线也是函数的切线,设切点为,所以切线方程为,整理得,所以,整理得,即,令,则,所以在上单调递减,在上单调递增,故,显然,故当时取得最小值,即实数的最小值为4,故选:B.【题目点拨】本题考查利用导数分析恒成立问题,两曲线的公切线问题,属于中档题.11、D【解题分析】

根据充分条件和必要条件的定义,逆否命题的定义、含有量词的命题的否定以及复合命题的真假关系依次对选项进行判断即可得到答案。【题目详解】对于A,由可得或,即“”是“”的充分不必要条件,故A正确;对于B,根据逆否命题的定义可知命题“若,则”的逆否命题是“若,则”,故B正确;对于C,由全称命题的否定是存在命题,可知若命题“”,则“”,故C正确;对于D,根据复合命题的真值表可知若“”为真命题,则至少一个为真命题,故D错误。故答案选D【题目点拨】本题考查命题真假的判定,涉及到逆否命题的定义、充分条件与必要条件的判断、含有量词的命题的否定以及复合命题的真假关系,属于基础题。12、D【解题分析】

由已知得到:,对于函数h(x)=lnx,由于h′(x)=

令,可知r(1)<0,r(2)>0,故1<β<2

,且,选D.二、填空题:本题共4小题,每小题5分,共20分。13、7【解题分析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.

考点:1、线性规划的应用;2、利用基本不等式求最值.14、【解题分析】

令,求导数,从而确定函数的单调性及极值,从而求出a的范围.【题目详解】由题意得,,

,令,则令,解得:或,

令,解得:,

在上是增函数,在上是减函数,在上是增函数,

,且当时,,当时,

所以函数与的图象有且只有三个交点,

则只需和图象有且只有三个交点,

故答案为:【题目点拨】本题考查了函数的单调性、极值问题,考查导数的应用以及转化思想,属于难题.15、1【解题分析】

试题分析:∵,∴.又展开式中的系数是-35,可得,∴m=1.∴.在①,令x=1,m=1时,由①可得,即考点:二项式系数的性质16、a<b【解题分析】

可先利用作差法比较两数平方的大小,然后得出两数的大小关系.【题目详解】解:因为,,所以,因为,所以,而,所以得到.【题目点拨】本题考查了综合法与分析法比较两数的大小关系,解题时可先用分析法进行分析,再用综合法进行书写解题过程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】

(1)利用和关系得到,验证时的情况得到,再利用等比数列公式得到数列的通项公式.(2)计算数列的通项公式,利用分组求和法得到答案.【题目详解】(1)当时,,当时,,与已知式作差得,即,欲使为等比数列,则,又.故数列是以为首项,2为公比的等比数列,所以.(2)由(1)有得..【题目点拨】本题考查了等比数列的通项公式,分组求和法求前n项和,意在考查学生的计算能力.18、(1);(2);(3).【解题分析】分析:(1)根据频率分布直方图各矩形的面积和为可计算出.(2)根据频率分布直方图计算出产值小于500万元的企业共个,因此所求的概率为;(3)可取,运用超几何分布可以计算取各值的概率,从而得到其分布列和期望.详解:(1)根据频率分布直方图可知,.产值小于500万元的企业个数为:,所以抽到产值小于500万元的企业不超过两个的概率为.(3)的所有可能取值为,,.,,.∴的分布列为:期望为:.点睛:(1)频率分布直方图中,各矩形的面积之和为1,注意直方图中,各矩形的高是;(2)在计算离散型随机变量的概率时,注意利用常见的概率分布列来简化计算(如二项分布、超几何分布等).19、(1);(2)【解题分析】

(1)令,通过零点分段法可得解析式,进而将不等式变为,在每一段上分别构造不等式即可求得结果;(2)将问题转化为的值域是值域的子集的问题;利用零点分段法可确定解析式,进而得到值域;利用绝对值三角不等式可求得的最小值,由此可构造不等式求得结果.【题目详解】(1)令,由得:得或或,解得:.即不等式的解集为.(2)对任意,都有,使得成立,则的值域是值域的子集.,值域为;,,解得:或,即的取值范围为.【题目点拨】本题考查绝对值不等式的求解、与绝对值不等式有关的恒成立和能成立问题的求解,涉及到零点分段法和绝对值三角不等式的应用;关键是能够将恒、能成立问题转化为两函数的值域之间的关系,进而通过最值确定不等式.20、(1);(2)【解题分析】

(1)当,可得直线的参数方程为,消掉参数,即可求得直线的普通方程,由的参数方程为,可得,根据即可求得答案;(2)将直线的参数方程,代入圆的方程得,根据韦达定理和直线参数的几何意义,即可求得答案;【题目详解】(1)直线的参数方程为,消掉参数可得直线的普通方程为,的参数方程为(为参数)可得曲线的普通方程为.(2)将直线的参数方程为(为参数)代入圆的方程得,易知,设所对应的参数分别为,则,,所以,当时,的最小值为.【题目点拨】本题考查了参数方程化为直角坐标方程和利用直线参数方程几何意义求弦长问题,解题关键是掌握根据直线的参数方程求弦长问题时,一般与韦达定理相结合,考查了分析能力和计算能力,属于中档题.21、(1)见解析;(2)见解析.【解题分析】分析:(1)折叠前,,折叠后,,从而即可证明;(2)连接交于,连接,在正方形中,连接交于,从而可得,从而在中,,即得,从而平面.详解:(Ⅰ)证明:∵折叠前,∴折叠后,又∵∴平面,而平面∴.(Ⅱ)平面,证明如下:连接交于,连接,在正方形中,连接交于,则,所以,又,即,在中,,所以.平面,平面,所以平面.点睛:本题主要考查线面之间的平行与垂直关系,注意证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.线面垂直的性质,常用来证明线线垂直.22、(Ⅰ);(Ⅱ)或.【解题分析】

(Ⅰ)根据题中条件得知可求出直线的斜率,结合点在直线上,利用点斜式可写出直线的方程,于是可得出点、的坐标,进而求出椭圆的标准方程;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论