2024届上海市培佳双语学校数学高二第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届上海市培佳双语学校数学高二第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届上海市培佳双语学校数学高二第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届上海市培佳双语学校数学高二第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届上海市培佳双语学校数学高二第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市培佳双语学校数学高二第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的值等于()A.1 B.-1 C. D.2.如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是()A.2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2019年1~4月的业务量同比增长率超过50%,在3月最高C.从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长3.命题p:x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.下面几种推理过程是演绎推理的是()A.在数列|中,由此归纳出的通项公式B.由平面三角形的性质,推测空间四面体性质C.某校高二共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则5.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为A.1 B.2 C.3 D.46.如图是函数的导函数的图象,则下列说法正确的是()A.是函数的极小值点B.当或时,函数的值为0C.函数关于点对称D.函数在上是增函数7.一个口袋内装有大小相同的6个白球和2个黑球,从中取3个球,则共有()种不同的取法A.C61C22 B.8.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是()A.甲B.乙C.丙D.丁9.函数的图像大致为()A. B.C. D.10.岳阳高铁站进站口有3个闸机检票通道口,高考完后某班3个同学从该进站口检票进站到外地旅游,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这3个同学的不同进站方式有()种A.24 B.36 C.42 D.6011.在复数范围内,多项式可以因式分解为()A. B.C. D.12.在极坐标系中,圆的圆心的极坐标是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个袋子里装有大小形状完全相同的个小球,其编号分别为甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为,则停止取球;若编号不为,则将该球放回袋子中.由乙随机取出个小球后甲再从袋子中剩下的个小球随机取出一个,然后停止取球,则甲能取到号球的概率为__________.14.(N*)展开式中不含的项的系数和为________.15.给出下列4个命题:①若函数f(x)在(2015,2019)上有零点,则一定有f(2015)⋅f(2019)<0;②函数y=x+|x-4|③若函数f(x)=lg(ax2+5x+4)的值域为R④若函数f(x)满足条件f(x)-4f(1x)=x,(x∈R,x≠0),则|f(x)|其中正确命题的序号是:_____.(写出所有正确命题的序号)16.设函数的导数为,且,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若在处的切线与在处的切线平行,求实数的值;(2)若,讨论的单调性;(3)在(2)的条件下,若,求证:函数只有一个零点,且.18.(12分)已知函数,.(1)当时,求在上的最大值和最小值:(2)若,恒成立,求a的取值范围.19.(12分)为了巩固全国文明城市创建成果,今年吉安市开展了拆除违章搭建铁皮棚专项整治行为.为了了解市民对此项工作的“支持”与“反对”态度,随机从存在违章搭建的户主中抽取了男性、女性共名进行调查,调查结果如下:支持反对合计男性女性合计(1)根据以上数据,判断是否有的把握认为对此项工作的“支持”与“反对”态度与“性别”有关;(2)现从参与调查的女户主中按此项工作的“支持”与“反对”态度用分层抽样的方法抽取人,从抽取的人中再随机地抽取人赠送小礼品,记这人中持“支持”态度的有人,求的分布列与数学期望.参考公式:,其中.参考数据:20.(12分)甲、乙、丙3人均以游戏的方式决定是否参加学校音乐社团、美术社团,游戏规则为:①先将一个圆8等分(如图),再将8个等分点,分别标注在8个相同的小球上,并将这8个小球放入一个不透明的盒子里,每个人从盒内随机摸出两个小球、然后用摸出的两个小球上标注的分点与圆心构造三角形.若能构成直角三角形,则两个社团都参加;若能构成锐角三角形,则只参加美术社团;若能构成钝角三角形,则只参加音乐社团;若不能构成三角形,则两个社团都不参加.②前一个同学摸出两个小球记录下结果后,把两个小球都放回盒内,下一位同学再从盒中随机摸取两个小球.(1)求甲能参加音乐社团的概率;(2)记甲、乙、丙3人能参加音乐社团的人数为随机变量,求的分布列、数学期望和方差21.(12分)选修4-5:不等式选讲已知函数.(Ⅰ)求不等式的解集;(Ⅱ)若关于x的不等式恒成立,求实数a的取值范围.22.(10分)已知函数是定义在上的不恒为零的函数,对于任意非零实数满足,且当时,有.(Ⅰ)判断并证明的奇偶性;(Ⅱ)求证:函数在上为增函数,并求不等式的解集.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

根据复数的计算方法,可得的值,进而可得,可得答案.【题目详解】解:根据复数的计算方法,可得,则,故选:.【题目点拨】本题考查复数的混合运算,解本题时,注意先计算括号内,再来计算复数平方,属于基础题.2、D【解题分析】

由题意结合所给的统计图确定选项中的说法是否正确即可.【题目详解】对于选项A:2018年1~4月的业务量,3月最高,2月最低,差值为,接近2000万件,所以A是正确的;对于选项B:2018年1~4月的业务量同比增长率分别为,均超过,在3月最高,所以B是正确的;对于选项C:2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C是正确的;对于选项D,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D错误.本题选择D选项.【题目点拨】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.3、B【解题分析】

根据充分条件和必要条件的定义分别进行判断即可.【题目详解】命题p:∀x∈R,ax2﹣2ax+1>0,解命题p:①当a≠0时,△=4a2﹣4a=4a(a﹣1)<0,且a>0,∴解得:0<a<1,②当a=0时,不等式ax2﹣2ax+1>0在R上恒成立,∴不等式ax2﹣2ax+1>0在R上恒成立,有:0≤a<1;命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则0<a<1;所以当0≤a<1;推不出0<a<1;当0<a<1;能推出0≤a<1;故P是q的必要不充分条件.故选:B.【题目点拨】本题主要考查充分条件和必要条件的判断,考查了二次型函数恒成立的问题,考查了指数函数的单调性,属于基础题.4、D【解题分析】分析:演绎推理是由普通性的前提推出特殊性结论的推理.其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得出正确选项.详解:A在数列{an}中,a1=1,,通过计算a2,a3,a4由此归纳出{an}的通项公式”是归纳推理.B选项“由平面三角形的性质,推出空间四边形的性质”是类比推理C选项“某校高二(1)班有55人,高二(2)班有52人,由此得高二所有班人数超过50人”是归纳推理;;D选项选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“∠A与∠B是两条平行直线的同旁内角”,结论是“∠A+∠B=180°,是演绎推理.综上得,D选项正确故选:D.点睛:本题考点是进行简单的演绎推理,解题的关键是熟练掌握演绎推理的定义及其推理形式,演绎推理是由普通性的前提推出特殊性结论的推理.演绎推理主要形式有三段论,其结构是大前提、小前提、结论.5、B【解题分析】∵a1+a5=10,a4=7,∴2a1+6、D【解题分析】

由导函数的图象得到原函数的增减区间及极值点,然后逐一分析四个命题即可得到答案.【题目详解】由函数f(x)的导函数图象可知,当x∈(−∞,−a),(−a,b)时,f′(x)<0,原函数为减函数;当x∈(b,+∞)时,f′(x)>0,原函数为增函数.故不是函数的极值点,故A错误;当或时,导函数的值为0,函数的值未知,故B错误;由图可知,导函数关于点对称,但函数在(−∞,b)递减,在(b,+∞)递增,显然不关于点对称,故C错误;函数在上是增函数,故D正确;故答案为:D.【题目点拨】本题考查函数的单调性与导数的关系,属于导函数的应用,考查数形结合思想和分析能力,属于中等题.7、D【解题分析】

直接由组合数定义得解.【题目详解】由题可得:一个口袋内装有大小相同的8个球中,从中取3个球,共有N=C故选D【题目点拨】本题主要考查了组合数的定义,属于基础题.8、A【解题分析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立.详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意;若丙是获奖的歌手,则甲、丁都说的真话,不符合题意;若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意;故选A.点睛:本题考查合情推理,属基础题.9、B【解题分析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.10、D【解题分析】分析:三名同学可以选择1个或2个或3个不同的检票通道口进站,三种情况分别计算进站方式即可得到总的进站方式.详解:若三名同学从3个不同的检票通道口进站,则有种;若三名同学从2个不同的检票通道口进站,则有种;若三名同学从1个不同的检票通道口进站,则有种;综上,这3个同学的不同进站方式有种,选D.点睛:本题考查排列问题,属于中档题,解题注意合理分类讨论,而且还要注意从同一个进站口进入的学生的不同次序.11、A【解题分析】

将代数式化为,然后利用平方差公式可得出结果.【题目详解】,故选A.【题目点拨】本题考查复数范围内的因式分解,考查平方差公式的应用,属于基础题.12、B【解题分析】

先把圆的极坐标方程化为直角坐标方程,确定其圆心的直角坐标再化成极坐标即可.【题目详解】圆化为,,配方为,因此圆心直角坐标为,可得圆心的极坐标为故选B【题目点拨】本题考查极坐标方程与直角坐标方程的转化,点的直角坐标与极坐标的转化,比较基础.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

通过分析,先计算甲在第一次取得编号为1的概率,再计算甲在第二次取得编号为1的概率,两者相加即为所求.【题目详解】甲在第一次取得编号为1的概率为;甲在第二次取得编号为1的概率为,于是所求概率为,故答案为.【题目点拨】本题主要考查概率的相关计算,意在考查学生的分析能力,计算能力,难度中等.14、1【解题分析】

先将问题转化为二项展开式的各项系数和问题,再利用赋值法求出各项系数和.【题目详解】要求(n∈N∗)展开式中不含y的项,只需令y=0,(N*)展开式中不含的项的系数和即为展开式的系数和,令x=1得展开式的各项系数和为;故答案为:1.【题目点拨】因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.15、④【解题分析】

举出特例,如fx=(x-2017)2-1,即可判断①为假;根据定义域先将原函数化简,再根据奇偶性的定义,即可判断②为假;根据函数f(x)=lgax2+5x+4的值域为【题目详解】①若fx=(x-2017)2-1,则fx在2015,2019上有零点,此时②由9-x2>0得-3<x<3,所以y=所以函数y=x+③若函数f(x)=lgax当a=0时,显然成立.当a≠0时,则二次函数y=ax2+5x+4即Δ=25-16a≥0a>0解得0<a≤所以实数a的取值范围是0≤a≤2516④因为f(x)-4f1x=x,所以有f可得f(x)=-115x+所以fx当x>0时,x+4当x<0时,x+4所以fx=115故答案为④【题目点拨】本题主要考查命题真假的判定,熟记零点存在性定理、函数奇偶性的概念、对数型函数的性质、以及解方程组法求函数解析式等即可,属于常考题型.16、【解题分析】试题分析:,而,所以,,故填:.考点:导数三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析(3)见解析【解题分析】分析:(1)先求一阶导函数,,用点斜式写出切线方程(2)先求一阶导函数的根,求解或的解集,判断单调性。(3)根据(2)的结论,求出极值画出函数的示意图,分析函数只有一个零点的等价条件是极小值大于零,函数在是减函数,故必然有一个零点。详解:(1)因为,所以;又。由题意得,解得(2),其定义域为,又,令或。①当即时,函数与随的变化情况如下:当时,,当时,。所以函数在单调递增,在和单调递减②当即时,,所以,函数在上单调递减③当即时,函数与随的变化情况如下:当时,,当时,。所以函数在单调递增在和上单调递减(3)证明:当时,由①知,的极小值为,极大值为.因为且又由函数在是减函数,可得至多有一个零点又因为,所以函数只有一个零点,且.点睛:利用导数求在某点切线方程利用,即可,方程的根、函数的零点、两个函数图像的交点三种思想的转化,为解题思路提供了灵活性,导数作为研究函数的一个基本工具在使用。18、(1)最大值是,最小值为1.(2)【解题分析】

(1)记的导函数的导数为,分析可得,结合,可得在R上是增函数,再,可得在上是增函数,即得解;(2)分,,三种情况分析的单调性,继而分析的最小值,即得解.【题目详解】(1)为表述简单起见,记的导函数的导数为.当时,,则.,所以在R上是增函数.又,所以当时,,所以在上是增函数.故在上的最大值是,最小值为.(2),.①若,即时,,所以在R上是增函数.又,所以当时,,所以在上是增函数.所以当时,.可见,当,.又是偶函数,所以恒成立.所以符合题意.②若,即时,,所以在R上是减函数.所以当时,,所以在上是减函数.所以当时,.这与恒成立矛盾,所以不符合题意.③当时,.由,得.由的图象,知存在唯一的,使得.当时,.所以在上是减函数.所以当时,,所以在上是减函数.所以当时,.这与恒成立矛盾,所以不符合题意.综上,a的取值范围是.【题目点拨】本题考查了函数与导数综合,考查了二次求导,含参函数的最值,不等式恒成立问题,考查了学生综合分析,转化划归,分类讨论,数学运算的能力,属于较难题.19、(1)没有的把握认为对此项工作的“支持”与“反对”态度与性别有关;(2)分布列见解析,期望为.【解题分析】分析:(1)根据公式计算的观测值k,再根据表格即可得出结论;(2)的所有可能取值为,,,分别求出相对应的概率即可.详解:(1),∴没有的把握认为对此项工作的“支持”与“反对”态度与性别有关.(2)依题意可知,抽取的名女户主中,持“支持”态度的有人,持反对态度的有人,的所有可能取值为,,,,,,∴的分布列为:∴.点睛:解决独立性检验应用问题的方法解决一般的独立性检验问题,首先由所给2×2列联表确定a,b,c,d,n的值,然后根据统计量K2的计算公式确定K2的值,最后根据所求值确定有多大的把握判定两个变量有关联.20、(1);(2)分布列见解析;数学期望;方差【解题分析】

(1)先求得基

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论