2024届安徽定远县炉桥中学数学高二下期末监测试题含解析_第1页
2024届安徽定远县炉桥中学数学高二下期末监测试题含解析_第2页
2024届安徽定远县炉桥中学数学高二下期末监测试题含解析_第3页
2024届安徽定远县炉桥中学数学高二下期末监测试题含解析_第4页
2024届安徽定远县炉桥中学数学高二下期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽定远县炉桥中学数学高二下期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如下图,在同一直角坐标系中表示直线y=ax与y=x+a,正确的是()A. B. C. D.2.已知命题:若,则;:“”是“”的必要不充分条件,则下列命题是真命题的是()A. B.C. D.3.若函数f(x)=(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则g(x)=的图象是()A. B. C. D.4.函数的图象关于点对称,是偶函数,则()A. B. C. D.5.函数的单调增区间是()A. B. C. D.6.设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应A.从东边上山 B.从西边上山 C.从南边上山 D.从北边上山7.在的展开式中,记项的系数为,则+++=()A.45 B.60 C.120 D.2108.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的报名方法共有()A.4种 B.16种 C.64种 D.256种9.已知函数.若不等式的解集中整数的个数为3,则的取值范围是(

)A. B. C. D.10.已知命题,,命题q:若恒成立,则,那么()A.“”是假命题 B.“”是真命题C.“”为真命题 D.“”为真命题11.下列说法中正确的是()①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越弱;②回归直线一定经过样本点的中心;③随机误差满足,其方差的大小用来衡量预报的精确度;④相关指数用来刻画回归的效果,越小,说明模型的拟合效果越好.A.①② B.③④ C.①④ D.②③12.若函数f(x)的导数为f′(x)=-sinx,则函数图像在点(4,f(4))处的切线的倾斜角为()A.90°B.0°C.锐角D.钝角二、填空题:本题共4小题,每小题5分,共20分。13.设正方形的中心为,在以五个点、、、、为顶点的三角形中任意取出两个,则它们面积相等的概率为________14.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是以为直角顶点的等腰三角形,则的面积为__________.15.在中,,则_______.16.已知定义在R上的函数是奇函数且满足,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数(,为正实数,是虚数单位)是方程的一个根.(1)求此方程的另一个根及的值;(2)复数满足,求的取值范围.18.(12分)已知函数.(1)讨论函数的单调性;(2)设函数,当时,对任意的恒成立,求满足条件的最小的整数值.19.(12分)已知,是双曲线:(、为常数,)上的两个不同点,是坐标原点,且,(1)若是等腰三角形,且它的重心是双曲线的右顶点,求双曲线的渐近线方程;(2)求面积的最小值.20.(12分)复数,若是实数,求实数的值.21.(12分)已知函数,.(Ⅰ)若是函数的一个极值点,求实数的值及在内的最小值;(Ⅱ)当时,求证:函数存在唯一的极小值点,且.22.(10分)已知函数f(x)=3x,f(a+2)=81,g(x)=.(1)求g(x)的解析式并判断g(x)的奇偶性;(2)求函数g(x)的值域.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由题意逐一考查所给的函数图像是否符合题意即可.【题目详解】逐一考查所给的函数图像:对于选项A,过坐标原点,则,直线在轴的截距应该小于零,题中图像符合题意;对于选项C,过坐标原点,则,直线在轴的截距应该大于零,题中图像不合题意;过坐标原点,直线的倾斜角为锐角,题中BD选项中图像不合题意;本题选择A选项.【题目点拨】本题主要考查分类讨论的数学思想,一次函数的性质等知识,意在考查学生的转化能力和计算求解能力.2、B【解题分析】试题分析:命题为假命题,比如,但,命题为真命题,不等式的解为,所以,而,所以“”是“”的必要不充分条件,由命题的真假情况,得出为真命题,选B.考点:命题真假的判断.【易错点睛】本题主要考查了命题真假的判断以及充分必要条件的判断,属于易错题.判断一个命题为假命题时,举出一个反例即可,判断为真命题时,要给出足够的理由.对于命题,为假命题,容易判断,对于命题,要弄清楚充分条件,必要条件的定义:若,则是的充分不必要条件,若,则是的必要不充分条件,再根据复合命题真假的判断,得出为真命题.3、C【解题分析】本题考查指数型函数的奇偶性,单调性;对数函数的图像及图像的平移变换.因为是奇函数,所以恒成立,整理得:恒成立,所以则又函数在R上是增函数,所以于是函数的图像是由函数性质平移1个单位得到.故选C4、D【解题分析】

根据图像关于对称列方程,解方程求得的值.利用列方程,解方程求得的值,由此求得的值.【题目详解】由于图像关于对称,也即关于的对称点为,故,即,而,故,化简得,故.由于是偶函数,故,即,故.所以,故选D.【题目点拨】本小题主要考查已知函数的对称性、函数的奇偶性求解析式,属于中档题.5、A【解题分析】

求导,并解不等式可得出函数的单调递增区间。【题目详解】,,令,得或,因此,函数的单调递增区间为,,故选:A。【题目点拨】本题考查利用导数求函数的单调区间,求函数单调区间有以下几种方法:(1)基本性质法;(2)图象法;(3)复合函数法;(4)导数法。同时要注意,函数同类单调区间不能合并,中间用逗号隔开。6、D【解题分析】从东边上山共种;从西边上山共种;从南边上山共种;从北边上山共种;所以应从北边上山.故选D.7、C【解题分析】

由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【题目详解】(1+x)6(1+y)4的展开式中,含x3y0的系数是:=1.f(3,0)=1;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=11.故选C.【题目点拨】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.8、B【解题分析】根据题意,每个同学可以在两个课外活动小组中任选1个,即有2种选法,则4名同学一共有种选法;故选B.9、D【解题分析】

将问题变为,即有个整数解的问题;利用导数研究的单调性,从而可得图象;利用恒过点画出图象,找到有个整数解的情况,得到不等式组,解不等式组求得结果.【题目详解】由得:,即:令,当时,;当时,在上单调递减;在上单调递增,且,由此可得图象如下图所示:由可知恒过定点不等式的解集中整数个数为个,则由图象可知:,即,解得:本题正确选项:【题目点拨】本题考查根据整数解的个数求解参数取值范围的问题,关键是能够将问题转化为曲线和直线的位置关系问题,通过数形结合的方式确定不等关系.10、D【解题分析】

分别判断命题的真假性,然后再判断每个选项的真假【题目详解】,即不存在,命题是假命题若恒成立,⑴时,,即符合条件⑵时,则解得,则命题为真命题故是真命题故选【题目点拨】本题考查了含有“或”“且”“非”命题的真假判定,只需将命题的真假进行判定出来即可,需要解答一元二次不等式,属于基础题.11、D【解题分析】

运用相关系数、回归直线方程等知识对各个选项逐一进行分析即可【题目详解】①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越强,故错误②回归直线一定经过样本点的中心,故正确③随机误差满足,其方差的大小用来衡量预报的精确度,故正确④相关指数用来刻画回归的效果,越大,说明模型的拟合效果越好,故错误综上,说法正确的是②③故选【题目点拨】本题主要考查的是命题真假的判断,运用相关知识来进行判断,属于基础题12、C【解题分析】,函数f(x)的图像在点(4,f(4))处的切线的倾斜角为锐角。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先确定以五个点、、、、为顶点的三角形的个数,再确定从中取出两个的事件数,从中取出两个面积相等的事件数,最后根据古典概型概率公式求结果.【题目详解】以五个点、、、、为顶点的三角形共有,则从中取出两个有种方法;因为,因此从中取出两个面积相等有种方法;从而所求概率为故答案为:【题目点拨】本题考查古典概型概率以及简单计数,考查综合分析求解能力,属中档题.14、【解题分析】设,根据双曲线的定义,有,即.,,故三角形面积为.点睛:本题主要考查双曲线的定义,考查直线与圆锥曲线的位置关系,考查数形结合的数学思想方法和化归与转化的数学思想方法.解答直线与圆锥曲线位置关系题目时,首先根据题意画出曲线的图像,然后结合圆锥曲线的定义和题目所给已知条件来求解.利用题目所给等腰直角三角形,结合定义可求得直角三角形的边长,由此求得面积.15、【解题分析】

由正弦定理的边化角公式化简得出,再次利用正弦定理的边化角公式得出.【题目详解】由正弦定理的边化角公式得出即所以故答案为:【题目点拨】本题主要考查了正弦定理的边化角公式,属于中档题.16、0【解题分析】

根据奇函数的性质可知,由可求得周期和,利用周期化简所求式子可求得结果.【题目详解】为定义在上的奇函数,.由得:,是周期为的周期函数,令得:..故答案为:.【题目点拨】本题考查利用函数的奇偶性和周期性求解函数值的问题,关键是能够根据抽象函数关系式推导得到函数的周期.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】

(1)先求得的根,再根据题意求另一根即可.

(2)根据复数模长的计算表达再求解即可.【题目详解】(1),故,,.

(2)由有,即.所以.【题目点拨】本题主要考查了复数的基本运算以及模长的用法等,属于基础题型.18、(1)见解析(2)【解题分析】

(1)用导数讨论单调性,注意函数的定义域;(2)写出的具体形式,然后分离参数,进而讨论函数最值的范围,得出整数参量的取值范围.【题目详解】解:(1).由题意,函数的定义域为,当时,,单调增区间为:当时,令,由,得,,的单调递增区间为,的单调递减区间为:(2).由,因为对任意的恒成立当时对任意的恒成立,,只需对任意的恒成立即可.构造函数,且单调递增,,一定存在唯一的,使得即,.单调递增区间,单调递减区间.的最小的整数值为【题目点拨】本题考查用导数讨论函数单调性和函数的最值问题,其中用构造函数,属于函数导数不等式的综合题,难度较大.19、(1);(2)【解题分析】

(1)根据三角形重心的性质与是等腰三角形可求得的坐标,再代入双曲线方程求解即可.

(2)将双曲线:用极坐标表达,可直接设,再利用,代入求得关于的表达式再求最值即可.【题目详解】(1)当是等腰三角形,且它的重心是双曲线的右顶点时,可知在双曲线的右支上,且.设,则由重心性质有,故在双曲线上,故,可得,即.故双曲线的渐近线方程为.(2)由双曲线:,转换为极坐标则有,化简得,设则有,故,故,当且仅当,即,即时等号成立.故面积的最小值为.【题目点拨】本题主要考查了圆锥曲线中面积的最值问题,因为题中有,故在求面积的最小值时,可以考虑用极坐标的方法做进行简化计算,属于难题.20、【解题分析】

将复数进行四则运算,利用是实数,得到关于的二次方程,求得的值即可.【题目详解】,因为是实数,所以或,因为,所以.【题目点拨】本题考查复数的四则运算、共轭复数的概念、复数的分类,考查运算求解能力.21、(Ⅰ);(Ⅱ)见解析【解题分析】

(Ⅰ)由已知条件的导函数,以及,从而求出实数的值,利用导数求出函数在内的单调性,从而得到在内的最小值(Ⅱ)由题可得,令,要证函数存在唯一的极小值点,即证只有唯一根,利用导数求出的单调区间与值域即可,且由零点定理可知,由,可得,代入中,利用导数求出在内的最值即可证明。【题目详解】(Ⅰ)由题可得:,则,是函数的一个极值点,,即,解得:,经检验,当时,是函数的一个极值点;;当时,,令,解得:或,当时,、的变化如下表:所以当时,有最小值,(Ⅱ)当时,,令,,则,由于恒成立,所以恒大于零,则在上单调递增,由于,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论