




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省宜春市数学高二第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲球与某立方体的各个面都相切,乙球与这个立方体的各条棱都相切,丙球过这个立方体的所有顶点,则甲、乙、丙三球的半径的平方之比为()A.1∶2∶3 B.1∶∶C.1∶∶ D.1∶2∶32.已知且,则的最大值为()A. B. C. D.3.二项式的展开式中的系数是()A. B. C. D.4.x-2xn的展开式中的第7A.16 B.18 C.20 D.225.已知定义在上的函数的导函数为,且对任意都有,,则不等式的解集为()A. B. C. D.6.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是()A.甲B.乙C.丙D.丁7.若,则A.10 B.15 C.30 D.608.从位男生,位女生中选派位代表参加一项活动,其中至少有两位男生,且至少有位女生的选法共有()A.种 B.种C.种 D.种9.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有()种.A.36 B.30 C.12 D.610.下列函数中,即是奇函数,又在上单调递增的是A. B. C. D.11.命题:“关于x的方程的一个根大于,另一个根小于”;命题:“函数的定义域内为减函数”.若为真命题,则实数的取值范围是()A. B. C. D.12.函数y的图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在二项展开式中,常数项是_______.14.现有10件产品,其中6件一等品,4件二等品,从中随机选出3件产品,恰有1件一等品的概率为________.15.以下四个关于圆锥曲线命题:①“曲线为椭圆”的充分不必要条件是“”;②若双曲线的离心率,且与椭圆有相同的焦点,则该双曲线的渐近线方程为;③抛物线的准线方程为;④长为6的线段的端点分别在、轴上移动,动点满足,则动点的轨迹方程为.其中正确命题的序号为_________.16.在极坐标系中,过点并且与极轴垂直的直线方程是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.(1)求获得复赛资格应划定的最低分数线;(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间与各抽取多少人?(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。18.(12分)已知是定义域为的奇函数,且当时,,设“”.(1)若为真,求实数的取值范围;(2)设集合与集合的交集为,若为假,为真,求实数的取值范围.19.(12分)如图,在中,角,,的对边分别为,,,且.(1)求的大小;(2)若,为外一点,,,求四边形面积的最大值.20.(12分)传说《西游记》中孙悟空的“如意金箍棒”原本是东海海底的一枚“定海神针”.作为兵器,“如意金箍棒”威力巨大,且只有孙悟空能让其大小随意变化。假定孙悟空在使用“如意金箍棒”与各路妖怪打斗时,都将其变化为底面半径为4至10之间的圆柱体。现假定孙悟空刚与一妖怪打斗完毕,并降伏了此妖怪,此时“如意金箍棒”的底面半径为10,长度为.在此基础上,孙悟空使“如意金箍棒”的底面半径以每秒1匀速缩短,同时长度以每秒40匀速增长,且在这一变化过程中,当“如意金箍棒”的底面半径为8时,其体积最大.(1)求在这一变化过程中,“如意金箍棒”的体积随时间(秒)变化的解析式,并求出其定义域;(2)假设在这一变化过程中,孙悟空在“如意金箍棒”体积最小时,将其定型,准备迎战下一个妖怪。求此时“如意金箍棒”的底面半径。21.(12分)如图所示的几何,底为菱形,,.平面底面,,,.(1)证明:平面平面;(2)求二面角的正弦值.22.(10分)在平面直角坐标系中,曲线C:,直线:,直线:以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)写出曲线C的参数方程以及直线,的极坐标方程;(2)若直线与曲线C分别交于O、A两点,直线与曲线C交于O、B两点,求△AOB的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
设立方体为以2为边长的正方体,分别求出甲乙丙的半径,即可得出答案。【题目详解】设立方体为以2为边长的正方体,则,,所以【题目点拨】设立方体为以2为边长的正方体,分别求出甲乙丙的半径,即可得出答案。2、A【解题分析】
根据绝对值三角不等式可知;根据可得,根据的范围可得,根据二次函数的性质可求得结果.【题目详解】由题意得:当,即时,即:,即的最大值为:本题正确选项:【题目点拨】本题考查函数最值的求解,难点在于对于绝对值的处理,关键是能够将函数放缩为关于的二次函数的形式,从而根据二次函数性质求解得到最值.3、B【解题分析】
利用二项展开式的通项公式,令的幂指数等于,即可求出的系数.【题目详解】由题意,二项式展开式的通项公式为,令,解得,所以的系数为.故选:B【题目点拨】本题主要考查二项展开式的通项公式,考查学生计算能力,属于基础题.4、B【解题分析】
利用通项公式即可得出.【题目详解】x-2xn的展开式的第7项令n2-9=0=0,解得n=故选:B.【题目点拨】本题考查了二项式定理的应用、方程思想,考查了推理能力与计算能力,属于中档题.5、B【解题分析】
先构造函数,求导得到在R上单调递增,根据函数的单调性可求得不等式的解集.【题目详解】构造函数,,.又任意都有.在R上恒成立.在R上单调递增.当时,有,即的解集为.【题目点拨】本题主要考查利用函数的单调性解不等式,根据题目条件构造一个新函数是解决本题的关键.6、A【解题分析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立.详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意;若丙是获奖的歌手,则甲、丁都说的真话,不符合题意;若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意;故选A.点睛:本题考查合情推理,属基础题.7、B【解题分析】
分析:由于,与已知对比可得的值1.详解:由于,与已知对比可得故选B.点睛:本题考查二项式定理的应用,观察分析得到是关键,考查分析与转化的能力,属于中档题.8、B【解题分析】
由题意知本题要求至少有两位男生,且至少有1位女生,它包括:两个男生,两个女生;三个男生,一个女生两种情况,写出当选到的是两个男生,两个女生时和当选到的是三个男生,一个女生时的结果数,根据分类计数原理得到结果.解:∵至少有两位男生,且至少有1位女生包括:两个男生,两个女生;三个男生,一个女生.当选到的是两个男生,两个女生时共有C52C42=60种结果,当选到的是三个男生,一个女生时共有C53C41=40种结果,根据分类计数原理知共有60+40=100种结果,故选B.9、A【解题分析】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,因为先从其余3人中选出1人担任文艺委员,再从4人中选2人担任学习委员和体育委员,所以不同的选法共有种.本题选择A选项.10、B【解题分析】分析:对四个选项分别进行判断即可得到结果详解:对于,,,,不是奇函数,故错误对于,,,当时,,函数在上不单调,故错误对于,函数在上单调递减,故错误故选点睛:对函数的奇偶性作出判断可以用其定义法,单调性的判断可以根据函数的图像性质,或者利用导数来判断。11、B【解题分析】
通过分析命题为假命题只能真,于是可得到答案.【题目详解】命题真等价于即;由于的定义域为,故命题为假命题,而为真命题,说明真,故选B.【题目点拨】本题主要考查命题真假判断,意在考查学生的转化能力,逻辑推理能力,分析能力,难度中等.12、B【解题分析】
通过函数的单调性和特殊点的函数值,排除法得到正确答案.【题目详解】因为,其定义域为所以,所以为奇函数,其图像关于原点对称,故排除A、C项,当时,,所以D项错误,故答案为B项.【题目点拨】本题考查利用函数的奇偶性和特殊点的函数值来判断函数的图像,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、60【解题分析】
首先写出二项展开式的通项公式,并求指定项的值,代入求常数项.【题目详解】展开式的通项公式是,当时,.故答案为:60【题目点拨】本题考查二项展开式的指定项,意在考查公式的熟练掌握,属于基础题型.14、【解题分析】
利用古典概型的概率计算公式计算即可.【题目详解】从10件产品中任取3件共有种不同取法,其中恰有1件一等品共有种不同取法,由古典概型的概率计算公式知,从中随机选出3件产品,恰有1件一等品的概率为.故答案为:【题目点拨】本题考查古典概型的概率计算,考查学生的运算能力,是一道基础题.15、③④【解题分析】
对于①,求出“曲线为椭圆”的充要条件,判断与“”关系,即得①的正误;对于②,根据已知条件求出双曲线的方程,从而求出渐近线方程,即得②的正误;对于③,把抛物线的方程化为标准式,求出准线方程,即得③的正误;对于④,设,根据,可得,代入,求出动点的轨迹方程,即得④的正误.【题目详解】对于①,“曲线为椭圆”的充要条件是“且”.所以“曲线为椭圆”的必要不充分条件是“”,故①错误;对于②,椭圆的焦点为,又双曲线的离心率,所以双曲线的方程为,所以双曲线的渐近线方程为,故②错误;对于③,抛物线的方程化为标准式,准线方程为,故③正确;对于④,设,,,即,即动点的轨迹方程为.故④正确.故答案为:③④.【题目点拨】本题考查充分必要条件、圆锥曲线的性质和求轨迹方程的方法,属于中档题.16、【解题分析】
由题意画出图形,结合三角形中的边角关系得答案.【题目详解】如图,由图可知,过点(1,0)并且与极轴垂直的直线方程是ρcosθ=1.故答案为.【题目点拨】本题考查了简单曲线的极坐标方程,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)本次考试复赛资格最低分数线应划为100分;(2)5人,2人;(3)元.【解题分析】
(1)求获得复赛资格应划定的最低分数线,即是求考试成绩中位数,只需满足中位数两侧的频率之和均为0.5即可;(2)先确定得分在区间与的频率之比,即可求解;(3)先确定的可能取值,再求出其对应的概率,即可求出分布列和期望.【题目详解】(1)由题意知的频率为:,的频率为:所以分数在的频率为:,从而分数在的,假设该最低分数线为由题意得解得.故本次考试复赛资格最低分数线应划为100分。(2)在区间与,,在区间的参赛者中,利用分层抽样的方法随机抽取7人,分在区间与各抽取5人,2人,结果是5人,2人.(3)的可能取值为2,3,4,则:,从而Y的分布列为Y260023002000(元).【题目点拨】本题主要考查频率分布直方图求中位数,以及分层抽样和超几何分布等问题,熟记相关概念,即可求解,属于常考题型.18、(1);(2).【解题分析】试题分析:(1)由已知可得,函数为上的奇函数、且为增函数,由命题为真,则,所以,从而解得;(2)由集合,若为真,则,因为“为假,为真”等价于“、一真一假”,因此若真假,则;若假真,则.从而可得,实数的取值范围是.试题解析:∵函数是奇函数,∴,∵当时,,∴函数为上的增函数,∵,,∴,∴,若为真,则,解得(2),若为真,则,∵为假,为真,∴、一真一假,若真假,则;若假真,则综上,实数的取值范围是考点:1.函数性质的应用;2.命题的真假判断及其逻辑运算.19、(1)(2)【解题分析】
(1)由余弦定理和诱导公式整理,得到,求出;(2)在中,用余弦定理表示出,判断是等腰直角三角形,再利用三角形面积公式表示出,再利用辅助角公式化简,求出四边形面积的最大值.【题目详解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即为.(2)在中,,,由余弦定理可得,又∵,∴为等腰直角三角形,∴,∴当时,四边形面积有最大值,最大值为.【题目点拨】本题主要考查余弦定理解三角形、诱导公式、三角形面积公式和利用三角函数求最值,考查学生的分析转化能力和计算能力,属于中档题.20、(1),定义域为;(2)4【解题分析】
(1)根据时间,写出“如意金箍棒”的底面半径和长度,由此计算出体积的解析式,并根据半径的范围求得的取值范围,也即定义域.利用导数求得的单调区间和极大值,根据此时“如意金箍棒”的底面半径列方程,解方程求得的值,进而求得解析式.(2)由(1)中求得的单调区间,求得的最小值,并求得此时“如意金箍棒”的底面半径.【题目详解】解:(1)“如意金箍棒”在变化到秒时,其底面半径为,长度为则有,得:时,(秒),由知,当时,取得极大值所以,解得()所以,定义域为(2)由(1)得:所以当时,,当时,所以在区间上为增函数,在区间上为减函数则的最小值或;又所以当(秒)时,“如意金箍棒”体积最小,此时,“如意金箍棒”的底面半径为()【题目点拨】本小题主要考查圆柱的体积公式,考查利用导数研究函数的单调性、极值和最值,考查中国古代文化,考查运算求解能力,考查函数应用问题,属于中档题.21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库阁楼转让合同协议书
- 怎么手写定金合同协议书
- 电商运营合作合同协议书
- C语言图形化编程题库试题及答案
- 计算机基础知识难点分析与试题及答案
- 了解2025年计算机二级VFP考试试题及答案的技巧
- 认购协议书与购房合同
- 系统复习JAVA基础2025年计算机二级考试试题及答案
- 2025年计算机四级嵌入式技术问答试题及答案
- 2025年计算机二级C语言考试应试策略与试题及答案
- 2025年企业合规管理工作计划范文
- 施工安全常识试题及答案
- 2025届湖北省T8联盟压轴卷1英语试题
- 泳池负责人试题及答案
- 2025新版工程咨询合同
- 2025年江西九江市赣鄱砂业集团有限公司招聘笔试参考题库含答案解析
- 企业破产重组法律顾问协议
- 2025年高考政治三轮复习:统编版必修二《经济与社会》主观题专题练习题(含答案)
- DB11∕T1478-2024生产经营单位安全生产风险评估与管控
- 土方外运的施工方案
- 制度规章修订说明及执行情况反馈报告
评论
0/150
提交评论