




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届宁夏银川市金凤区六盘山高中数学高二下期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个算法的程序框图如图所示,则该程序框图的功能是A.求a,b,c三数中的最大数 B.求a,b,c三数中的最小数C.将a,b,c按从小到大排列 D.将a,b,c按从大到小排列2.如图是计算的值的程序框图,则图中①②处应填写的语句分别是()A., B.,C., D.,3.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.4.已知点在抛物线上,且为第一象限的点,过作轴的垂线,垂足为,为该抛物线的焦点,,则直线的斜率为()A. B. C.-1 D.-25.函数f(x)=13ax3A.0<a<1 B.1<a<2 C.0<a<2 D.a>26.若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则().A. B. C. D.7.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种 B.20种 C.25种 D.32种8.“k>1”是“函数f(x)=kx-lnx在区间A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.若随机变量X的分布列:X01P0.2m已知随机变量且,,则a与b的值为(
)A. B. C. D.10.甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球,先从甲罐中随机取出一个球放入乙罐,分别以,,表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,下列结论中不正确的是()A.事件与事件不相互独立 B.、、是两两互斥的事件C. D.11.函数的极小值点是()A.1 B.(1,﹣) C. D.(﹣3,8)12.口袋中装有5个形状和大小完全相同的小球,编号分别为1,2,3,4,5,从中任意取出3个小球,以表示取出球的最大号码,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则关于x的不等式的解集是_______.14.二项式展开式中的常数项是______.15.椭圆的焦点坐标是__________.16.已知函数,若函数y=f(x)﹣m有2个零点,则实数m的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若,求的取值范围;(2)若的图像与相切,求的值.18.(12分)甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局.(Ⅰ)求乙取胜的概率;(Ⅱ)记比赛局数为X,求X的分布列及数学期望E(X).19.(12分)在中,已知的平分线交于点,.(1)求与的面积之比;(2)若,,求和.20.(12分)某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表:每分钟跳绳个数得分1617181920年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中,为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正态分布模型,解决以下问题:(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为,求随机变量的分布列和数学期望与方差.附:若随机变量服从正态分布,则,,.21.(12分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中7件是一等品,3件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,(i)记一等品的件数为,求的分布列;(ii)求这三件产品都不能通过检测的概率.22.(10分)大型综艺节目,《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的根据调查显示,是否喜欢盲拧魔方与性别有关为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如表所示,并邀请其中20名男生参加盲拧三阶魔方比赛,其完成情况如表所示.(Ⅰ)将表补充完整,并判断能否在犯错误的概率不超过的前提下认为是否喜欢盲拧与性别有关?(Ⅱ)现从表中成功完成时间在和这两组内的6名男生中任意抽取2人对他们的盲拧情况进行视频记录,求2人成功完成时间恰好在同一组内的概率.附参考公式及数据:,其中.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据框图可知,当a>b时,把b的值赋给a,此时a表示a、b中的小数;当a>c时,将c的值赋给a,a表示a、c中的小数,所以输出a表示的是a,b,c中的最小数.【题目详解】由程序框图,可知若a>b,则将b的值赋给a,a表示a,b中的小数;再判断a与c的大小,若a>c,则将c的值赋给a,则a表示a,c中的小数,结果输出a,即a是a,b,c中的最小数.【题目点拨】本题考查程序框图的应用,解题的关键是在解题的过程中模拟程序框图的运行过程,属于基础题.2、A【解题分析】该程序是求数列的前16项和,①处变量每次增加2,②处是循环控制条件,循环体共执行了16次,故时,退出循环,选A.3、A【解题分析】
先利用定积分计算阴影部分面积,再用阴影部分面积除以总面积得到答案.【题目详解】曲线分别是,的一部分则阴影部分面积为:总面积为:【题目点拨】本题考查了定积分,几何概型,意在考查学生的计算能力.4、B【解题分析】
设,由,利用抛物线定义求得,进而得进而即可求解【题目详解】设,因为,所以,解得,代入抛物线方程得,所以,,,从而直线的斜率为.故选:B【题目点拨】本题考查抛物线的性质及定义,考查运算求解能力,是基础题.5、D【解题分析】
函数f(x)=13ax3-x2+5(a>0)在(0,1)【题目详解】f'(x)=ax2-2x,函数f(x)=13ax3-x2+5(a>0)在(0,1)上不单调,即故答案为D.【题目点拨】本题考查了函数的单调性,考查了二次函数的性质,考查了学生分析问题与解决问题的能力,属于中档题.6、A【解题分析】
先求事件A包含的基本事件,再求事件AB包含的基本事件,利用公式可得.【题目详解】由于6人各自随机地确定参观顺序,在参观的第一小时时间内,总的基本事件有个;事件A包含的基本事件有个;在事件A发生的条件下,在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人的基本事件为个,而总的基本事件为,故所求概率为,故选A.【题目点拨】本题主要考查条件概率的求解,注意使用缩小事件空间的方法求解.7、D【解题分析】每个同学都有2种选择,根据乘法原理,不同的报名方法共有种,应选D.8、A【解题分析】分析:求出导函数f'(x),若函数f(x)=kx-lnx在(1,+∞)单调递增,可得f'(x)详解:f'(x)=k-1x,
∵若函数函数f(x)=kx-lnx在(1,+∞)单调递增,
∴f'(x)≥0在区间(1,+∞)上恒成立.
∴k≥1x,而y=1x在区间(1,+∞)上单调递减,
∴点睛:本题考查充分不必要条件的判定,考查利用导数研究函数的单调性、恒成立问题的等价转化方法,属中档题.9、C【解题分析】
先根据随机变量X的分布列可求m的值,结合,,可求a与b的值.【题目详解】因为,所以,所以,;因为,,所以解得,故选C.【题目点拨】本题主要考查随机变量的期望和方差,注意两个变量之间的线性关系对期望方差的影响.10、D【解题分析】分析:由题意,,是两两互斥事件,条件概率公式求出,,对照选项即可求出答案.详解:由题意,,是两两互斥事件,,,,,而.所以D不正确.故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.11、A【解题分析】
求得原函数的导数,令导数等于零,解出的值,并根据单调区间判断出函数在何处取得极小值,并求得极值,由此得出正确选项.【题目详解】,由得函数在上为增函数,上为减函数,上为增函数,故在处有极小值,极小值点为1.选A【题目点拨】本小题主要考查利用导数求函数的极值点,属于基础题.12、A【解题分析】
首先计算各个情况概率,利用数学期望公式得到答案.【题目详解】故.故本题正确答案为A.【题目点拨】本题考查了概率的计算和数学期望的计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求出是奇函数,且在定义域上是单减函数,变形再利用单调性解不等式可得解.【题目详解】,是奇函数,又是上的减函数,是上的增函数,由函数单调性质得是上的减函数.,则,由奇函数得且是上的减函数.,,又不等式的解集是故答案为:【题目点拨】本题考查利用函数奇偶性和单调性解指对数方程或不等式.有关指对数方程或不等式的求解思路:利用指对数函数的单调性,要特别注意底数的取值范围,并在必要时进行分类讨论.14、【解题分析】
写出二项式展开式的通项,令的指数为零,求出参数的值,然后代入通项即可求出该二项式展开式中的常数项.【题目详解】二项式展开式的通项为,令,得,因此,该二项式展开式中的常数项为.故答案为:.【题目点拨】本题考查二项式展开式中常数项的求解,一般利用二项展开式通项中的指数为零来求解,考查运算求解能力,属于中等题.15、【解题分析】
从椭圆方程中得出、的值,可得出的值,可得出椭圆的焦点坐标.【题目详解】由题意可得,,,因此,椭圆的焦点坐标是,故答案为.【题目点拨】本题考查椭圆焦点坐标的求解,解题时要从椭圆的标准方程中得出、、的值,同时也要确定焦点的位置,考查计算能力,属于基础题.16、m=2或m≥3【解题分析】分析:画出函数的图象,结合图象,求出m的范围即可.详解:画出函数的图象,如图:若函数y=f(x)﹣m有2个零点,结合图象:或.故答案为:或.点睛:对于“a=f(x)有解”型问题,可以通过求函数y=f(x)的值域来解决,解的个数也可化为函数y=f(x)的图象和直线y=a交点的个数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1【解题分析】
(1)由题意可得,设,求得导数和单调性、极值和最值,即可得到所求范围;(2)设的图象与相切于点,求得的导数,可得切线的斜率和切点满足曲线方程,解方程即可得到所求值.【题目详解】(1)由得.,从而,即.设.,则,()所以时,,单调递增;时,,单调递减,所以当时,取得最大值,故的取值范围是.(2)设的图像与相切于点,依题意可得因为,所以消去可得.令,则,显然在上单调递减,且,所以时,,单调递增;时,,单调递减,所以当且仅当时.故.【题目点拨】本题主要考查导数的几何意义即函数在某点处的导数即为在改点处切线的斜率,导数与函数单调性、极值和最值的关系,由,得函数单调递增,得函数单调递减,考查方程思想和运算能力、推理能力,属于中档题.18、(I)316【解题分析】
(Ⅰ)乙取胜有两种情况一是乙连胜四局,二是第三局到第六局中乙胜三局,第七局乙胜,由互斥事件的概率公式与根据独立事件概率公式能求出乙胜概率;(Ⅱ)由题意得X=4,5,6,7,结合组合知识,利用独立事件概率公式及互斥事件的概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X的数学期望E(X).【题目详解】(Ⅰ)乙取胜有两种情况一是乙连胜四局,其概率p1二是第三局到第六局中乙胜三局,第七局乙胜,其概率p2∴乙胜概率为p=p(Ⅱ)由题意得X=4,5,6,7,P(X=4)=(1P(X=5)=CP(X=6)=(1P(X=7)=C所以ξ的分布列为ξ4567P1111EX=(4+5+6+7)×1【题目点拨】本题主要考查互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题.求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19、(1)(2),【解题分析】
由三角形面积公式解出即可.利用余弦定理解出,再根据比值求出和.【题目详解】(1)设与的面积分别为,,则,,因为平分,所以,又因为,所以,∴.(2)在中,由余弦定理得,,∴,由(1)得,∴,.【题目点拨】本题考查三角形的面积公式、余弦定理.属于基础题.20、(1);(2)(i)1683;(ii).【解题分析】
(1)根据频率分布直方图得到16分,17分,18分的人数,再根据古典概率的计算公式求解.(2)根据离散型随机变量的分布列和数学期望与方差的公式进行求解.【题目详解】(1)设“两人得分之和小于35分”为事件,则事件包括以下四种情况:①两人得分均为16分;②两人中一人16分,一人17分;③两人中一人16分,一人18分;④两人均17分.由频率分布直方图可得,得16分的有6人,得17分的有12人,得18分的有18人,则由古典概型的概率计算公式可得.所以两人得分之和小于35的概率为.(2)由频率分布直方图可得样本数据的平均数的估计值为:(个).又由,得标准差,所以高二年级全体学生的跳绳个数近似服从正态分布.(i)因为,所以,故高二年级一分钟跳绳个数超过164个的人数估计为(人).(ii)由正态分布可得,全年级任取一人,其每分钟跳绳个数在179以上的概率为,所以,的所有可能的取值为0,1,2,3.所以,,,,故的分布列为:0123所以,.【题目点拨】本题考查了频率分布直方图的应用问题、正态分布的应用问题,也考查了离散型随机变量的分布列与期望的计算问题.21、(1)(2)(ⅰ)见解析(ⅱ)见解析【解题分析】
(1)设随机选取一件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林资源经营风险管理考核试卷
- 膨化食品生产考核试卷
- 管道工程质量管理信息系统考核试卷
- 肥料制造中的生态农业与有机农业考核试卷
- 木材质量检验与判定考核试卷
- 建材家居经销商会员制合作及积分奖励合同
- 工业废气处理工程验收质量标准及售后服务合同
- 主题展览地接服务补充协议
- 抖音火花澳新市场电商分销渠道合作协议
- 《婚前财产分割及债权债务明确处理协议》
- 手机媒体概论(自考14237)复习题库(含真题、典型题)
- 琴行老师劳动协议合同
- 2024年陕西省普通高中学业水平合格性考试历史试题(解析版)
- 2024年河北承德公开招聘社区工作者考试试题答案解析
- 以科技赋能医疗打造透明化的肿瘤疾病诊断平台
- 新疆维吾尔自治区和田地区2024-2025学年高三5月考试题语文试题试卷含解析
- 环保安全知识课件
- 重庆建峰工业集团有限公司招聘笔试题库2025
- 江苏省苏、锡、常、镇2025年高考物理三模试卷含解析
- 2024北京朝阳城市发展集团有限公司社会化招聘专场笔试参考题库附带答案详解
- 山东临沂市罗庄区兴罗投资控股有限公司招聘笔试题库2025
评论
0/150
提交评论