




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽定远育才实验学校2024届数学高二第二学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从5个中国人、4个美国人、3个日本人中各选一人的选法有()A.12种 B.24种 C.48种 D.60种2.“已知函数,求证:与中至少有一个不少于.”用反证法证明这个命题时,下列假设正确的是()A.假设且B.假设且C.假设与中至多有一个不小于D.假设与中至少有一个不大于3.已知函数是定义在上的偶函数,且,若对任意的,都有成立,则不等式的解集为()A. B.C. D.4.利用数学归纳法证明“且”的过程中,由假设“”成立,推导“”也成立时,该不等式左边的变化是()A.增加B.增加C.增加并减少D.增加并减少5.在各项都为正数的等差数列{an}中,若a1+a2+…+a10=30,则a5•a6的最大值等于()A.3B.6C.9D.366.如图,已知函数的图象关于坐标原点对称,则函数的解析式可能是()A. B.C. D.7.若实数满足,则下列关系中不可能成立的是()A. B. C. D.8.在正四面体中,点,分别在棱,上,若且,,则四面体的体积为()A. B. C. D.9.若,均为单位向量,且,则与的夹角大小为()A. B. C. D.10.若1a<1bA.a2<b2 B.ab<11.(2x-3y)9A.-1 B.512 C.-512 D.112.设是两个平面向量,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.(广东深圳市高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即的面积,其中分别为内角的对边.若,且,则的面积的最大值为__________.14.已知向量与,则的最小值是__________.15.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有;(用数字作答)16.如果不等式的解集为,且,那么实数的取值范围是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若不等式对任意的恒成立,求实数的取值范围;(2)记表示中的最小值,若函数在内恰有一个零点,求实的取值范围.18.(12分)如图,四棱锥中,底面为平行四边形,底面,是棱的中点,且.(1)求证:平面;(2)如果是棱上一点,且直线与平面所成角的正弦值为,求的值.19.(12分)三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.20.(12分)已知,,为实数.(1)若,求;(2)若,求实数,的值.21.(12分)学校某社团参加某项比赛,需用木料制作如图所示框架,框架下部是边长分别为的矩形,上部是一个半圆,要求框架围成总面积为.(1)试写出用料(即周长)关于宽的函数解析式,并求出的取值范围;(2)求用料(即周长)的最小值,并求出相应的的值.22.(10分)党的十九大报告提出,转变政府职能,深化简政放权,创新监管方式,增强政府公信力和执行力,建设人民满意的服务型政府,某市为提高政府部门的服务水平,调查群众对两个部门服务的满意程度.现从群众对两个部门的评价(单位:分)中各随机抽取20个样本,根据评价分作出如下茎叶图:从低到高设置“不满意”,“满意”和“很满意”三个等级,在内为“不满意”,在为“满意”,在内为“很满意”.(1)根据茎叶图判断哪个部门的服务更令群众满意?并说明理由;(2)从对部门评价为“很满意”或“满意”的样本中随机抽取3个样本,记这3个样本中评价为“很满意”的样本数量为,求的分布列和期望.(3)以上述样本数据估计总体数据,现在随机邀请5名群众对两个部门的服务水平打分,则至多有1人对两个部门的评价等级相同的概率是多少?(计算结果精确到0.01)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
直接根据乘法原理得到答案.【题目详解】根据乘法原理,一共有种选法.故选:.【题目点拨】本题考查了乘法原理,属于简单题.2、B【解题分析】分析:因为与中至少有一个不少于的否定是且,所以选B.详解:因为与中至少有一个不少于的否定是且,故答案为:B.点睛:(1)本题主要考查反证法,意在考查学生对这些知识的掌握水平.(2)两个数中至少有一个大于等于a的否定是两个数都小于a.3、D【解题分析】
构造函数,判断函数的单调性和奇偶性,根据其性质解不等式得到答案.【题目详解】对任意的,都有成立构造函数在上递增.是偶函数为奇函数,在上单调递增.当时:当时:故答案选D【题目点拨】本题考查了函数的奇偶性,单调性,解不等式,构造函数是解题的关键.4、D【解题分析】
由题写出时的表达式和的递推式,通过对比,选出答案【题目详解】时,不等式为时,不等式为,增加并减少.故选D.【题目点拨】用数学归纳法写递推式时,要注意从到时系数k对表达式的影响,防止出错的方法是依次写出和的表达式,对比增项是什么,减项是什么即可5、C【解题分析】试题分析:由题设,所以,又因为等差数列各项都为正数,所以,当且仅当时等号成立,所以a5·a6的最大值等于9,故选C.考点:1、等差数列;2、基本不等式.6、C【解题分析】
根据函数图像的对称性,单调性,利用排除法求解.【题目详解】由图象知,函数是奇函数,排除,;当时,显然大于0,与图象不符,排除D,故选C.【题目点拨】本题主要考查了函数的图象及函数的奇偶性,属于中档题.7、D【解题分析】
根据题意,结合对数函数的性质,依次分析选项,综合即可得答案.【题目详解】根据题意,实数,满足,对于,若,均大于0小于1,依题意,必有,故有可能成立;对于,若,则有,故有可能成立;对于,若,均大于1,由,知必有,故有可能成立;对于,当时,,,不能成立,故选.【题目点拨】本题考查对数函数的单调性,注意分类讨论、的值,属于中档题.8、C【解题分析】
由题意画出图形,设,,,由余弦定理得到关于,,的方程组,求解可得,的值,然后分别求出三角形的面积及A到平面的高,代入棱锥体积公式得答案.【题目详解】如图,设,,,∵,,∴由余弦定理得,①②③③-①得,,即,∵,则,代入③,得,又,得,,∴.∴A到平面PEF的距离.∴,故选C.【题目点拨】本题考查棱柱、棱锥、棱台体积的求法,考查数形结合的解题思想方法,考查计算能力,是中档题.9、C【解题分析】分析:由向量垂直得向量的数量积为0,从而求得,再由数量积的定义可求得夹角.详解:∵,∴,∴,∴,∴.故选C.点睛:平面向量数量积的定义:,由此有,根据定义有性质:.10、D【解题分析】
不妨令a=-1,b=-2【题目详解】由题1a<1b<0,不妨令a=-1,b=-2,可得a2<ba-b=-1【题目点拨】本题主要考查不等式与不等关系,利用特殊值代入法,排除不符合条件的选项,是一种简单有效的方法,属于基础题11、B【解题分析】
(a+b)n展开式中所有项的二项系数和为【题目详解】(a+b)n展开式中所有项的二项系数和为2(2x-3y)9的展开式中各项的二项式系数之和为2故答案选B【题目点拨】本题考查了二项系数和,属于基础题型.12、A【解题分析】
由,则是成立的;反之,若,而不一定成立,即可得到答案.【题目详解】由题意是两个平面向量,若,则是成立的;反之,若,则向量可能是不同的,所以不一定成立,所以是是成立的充分而不必要条件,故选A.【题目点拨】本题主要考查了向量的概念以及向量模的概念的应用,以及充分条件与必要条件的判定,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由题设可知,即,由正弦定理可得,所以,当时,,故填.14、【解题分析】
,所以,所以,故当时,的最小值是.考点:向量的模点评:本题考查向量的模的最值,解题的关键是能准确的表示出模的函数,再求解最值.15、24【解题分析】甲、乙排在一起,用捆绑法,先排甲、乙、戊,有种排法,丙、丁不排在一起,用插空法,有种排法,所以共有种.考点:排列组合公式.16、【解题分析】
将不等式两边分别画出图形,根据图像得到答案.【题目详解】不等式的解集为,且画出图像知:故答案为:【题目点拨】本题考查了不等式的解法,将不等式关系转化为图像是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)利用分离参数,并构造新的函数,利用导数判断的单调性,并求最值,可得结果.(2)利用对的分类讨论,可得,然后判断函数单调性以及根据零点存在性定理,可得结果.【题目详解】(1)由,得,令,当时,,,;当时,,,,∴函数在上递减,在上递增,,,∴实数的取值范围是(2)①由(1)得当时,,,,函数在内恰有一个零点,符合题意②当时,i.若,,,故函数在内无零点ii.若,,,,不是函数的零点;iii.若时,,故只考虑函数在的零点,,若时,,∴函数在上单调递增,,,∴函数在上恰有一个零点若时,,∴函数在上单调递减,,∴函数在上无零点,若时,,,∴函数在上递减,在上递增,要使在上恰有一个零点,只需,.综上所述,实数的取值范围是.【题目点拨】本题考查函数导数的综合应用,难点在于对参数的分类讨论,考验理解能力以及对问题的分析能力,属难题.18、(1)证明见解析;(2).【解题分析】试题分析:(1)由所以.又因为底面平面;(2)如图以为原点建立空间直角坐标系,求得平面的法向量和.试题解析:(1)连结,因为在中,,所以,所以.因为,所以.又因为底面,所以,因为,所以平面(2)如图以为原点,所在直线分别为轴建立空间直角坐标系,则.因为是棱的中点,所以.所以,设为平面的法向量,所以,即,令,则,所以平面的法向量因为是在棱上一点,所以设.设直线与平面所成角为,因为平面的法向量,所以.解得,即,所以考点:1、线面垂直;2、线面角.19、⑴(2)【解题分析】
⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【题目详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【题目点拨】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等20、(1);(2)-3,2【解题分析】分析:(1)利用复数乘法的运算法则以及共轭复数的定义化简,利用复数模的公式求解即可;(2)利用复数除法的运算法则将,化为,由复数相等的性质可得,从而可得结果.详解:(1)∵,∴.∴,∴;(2)∵,∴.∴,解得,∴,的值为:-3,2.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分21、(1),;(2),此时【解题分析】
(1)根据面积可得到与的关系,写出周长即可(2)根据(1)写出的,利用均值不等式求解即可.【题目详解】(1),,,由得.(2),,当且仅当,即等号成立.【题目点拨】本题主要考查了实际问题中的函数关系,均值不等式,属于中档题.22、(1)A部门,理由见解析;(2)的分布列见解析;期望为1;(3)..【解题分析】
(1)通过茎叶图中两部门“叶”的分布即可看出;(2)随机抽取3人,,分别求出相应的概率,即可求出的分布列和期望;(3)求出评价一次两个部门的评价等级不同和相同的概率,随机邀请5名群众,是独立重复实验满足二项分布根据计算公式即可求出.【题目详解】解:(1)通过茎叶图可以看出:A部门的“叶”分布在“茎”的8上,B部门的“叶”分布在“茎”的7上.所以A部门的服务更令群众满意.(2)由茎叶图可知:部门评价为“很满意”或“满意”的样本数量有个,“很满意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国土地出售行业市场发展前瞻及投资战略研究报告
- 知航教育面试真题及答案
- 四上科学期中试卷及答案
- 四年级难点的试卷及答案
- 遴选面试真题及答案解释
- 临沂统考面试真题及答案
- 酒吧服务标准化研究-全面剖析
- 血脑屏障破坏与药物透过性-全面剖析
- 财务分析模型创新-第1篇-全面剖析
- 2024年中山市高校毕业生“三支一扶”计划招募真题
- 社区卫生服务中心的运营与管理策略
- (高清版)DB21∕T 3485-2021 容器检验检测报告附图画法
- 《应收款项减值专题》课件
- 农艺师常规知识培训课件
- 2025-2030年中国管理咨询行业十三五发展战略规划及投资前景预测报告
- 孕期产检流程讲解
- 【Flywheel】2024年电商消费趋势年度报告
- 第8课 良师相伴 亦师亦友(课件)-【中职专用】高一思想政治《心理健康与职业生涯》
- 2025山东能源集团中级人才库选拔高频重点提升(共500题)附带答案详解
- 国际物流中的风险管理与决策优化探讨
- 旅游度假村租赁承包合同样本
评论
0/150
提交评论