2024届福建省福州市第四中学数学高二下期末经典模拟试题含解析_第1页
2024届福建省福州市第四中学数学高二下期末经典模拟试题含解析_第2页
2024届福建省福州市第四中学数学高二下期末经典模拟试题含解析_第3页
2024届福建省福州市第四中学数学高二下期末经典模拟试题含解析_第4页
2024届福建省福州市第四中学数学高二下期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省福州市第四中学数学高二下期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数的定义域为R,满足,且当时.则当,的最小值是()A. B. C. D.2.函数(为自然对数的底数)的递增区间为()A. B. C. D.3.已知a=1,b=3-2A.a>b>c B.a>c>b C.b>c>a D.c>b>a4.函数的极小值点是()A.1 B.(1,﹣) C. D.(﹣3,8)5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油6.把67化为二进制数为A.1100001(2) B.1000011(2)C.110000(2) D.1000111(2)7.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是()A. B. C. D.8..设(x1,y1),(x2,y2A.x和y的相关系数为直线l的斜率B.x和y的相关系数在0到1之间C.当n为偶数时,分布在l两侧的样本点的个数一定相同D.直线l过点(9.设,则二项式展开式的常数项是()A.1120 B.140 C.-140 D.-112010.在的展开式中,项的系数为().A. B. C. D.11.函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为()A.2B.1C.0D.不能确定12.用反证法证明命题“若,则”时,正确的反设为()A.x≤﹣1 B.x≥﹣1 C.x2﹣2x﹣3≤0 D.x2﹣2x﹣3≥0二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,若的奇数次幂的项的系数之和为32,则________.14.长方体内接于球O,且,,则A、B两点之间的球面距离为______.15.在正方体ABCD﹣A1B1C1D1,二面角A﹣BD﹣A1的大小为_____.16.已知定义在上的函数满足(其中为的导函数)且,则不等式的解集是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,,.(1)求,,;(2)判断数列是否为等比数列,并说明理由.18.(12分)已知,函数.(1)讨论函数的单调性;(2)若,且在时有极大值点,求证:.19.(12分)已知的展开式中所有项的系数和为.(1)求的展开式中二项式系数最大的项;(2)求的展开式中的常数项.20.(12分)已知函数.(Ⅰ)若函数在区间和上各有一个零点,求的取值范围;(Ⅱ)若在区间上恒成立,求的取值范围.21.(12分)已知、为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于.(1)求椭圆的方程;(2)若过点的直线与椭圆交于、两点,若,求直线的方程.22.(10分)在平面直角坐标系xOy中,曲线M的参数方程为(t为参数,且t>0),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.(1)将曲线M的参数方程化为普通方程,并将曲线C的极坐标方程化为直角坐标方程;(2)求曲线M与曲线C交点的极坐标(ρ≥0,0≤θ<2π).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

先求出函数在区间上的解析式,利用二次函数的性质可求出函数在区间上的最小值.【题目详解】由题意可知,函数是以为周期的周期函数,设,则,则,即当时,,可知函数在处取得最小值,且最小值为,故选D.【题目点拨】本题考查函数的周期性以及函数的最值,解决本题的关键就是根据周期性求出函数的解析式,并结合二次函数的基本性质求解,考查计算能力,属于中等题.2、D【解题分析】,由于恒成立,所以当时,,则增区间为.,故选择D.3、A【解题分析】

将b、c进行分子有理化,分子均化为1,然后利用分式的基本性质可得出三个数的大小关系。【题目详解】由3而3+2<6+5,所以b>c,又【题目点拨】本题考查比较大小,在含有根式的数中,一般采用有理化以及平方的方式来比较大小,考查分析问题的能力,属于中等题。4、A【解题分析】

求得原函数的导数,令导数等于零,解出的值,并根据单调区间判断出函数在何处取得极小值,并求得极值,由此得出正确选项.【题目详解】,由得函数在上为增函数,上为减函数,上为增函数,故在处有极小值,极小值点为1.选A【题目点拨】本小题主要考查利用导数求函数的极值点,属于基础题.5、D【解题分析】

解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D正确故选D.考点:1、数学建模能力;2、阅读能力及化归思想.6、B【解题分析】如图:所以把67化为二进制数为1000011(2).故选B.考点:二进制法.7、A【解题分析】

先分析的奇偶性以及在的单调性,然后再对每个选项进行分析.【题目详解】函数为偶函数,且在上为增函数,对于选项,函数为偶函数,在上为増函数,符合要求;对于选项,函数是偶函数,在上为减函数,不符合题意;对于选项,函数为奇函数,不符合题意;对于选项,函数为非奇非偶函数,不符合要求;只有选项符合要求,故选.【题目点拨】奇偶函数的判断:(满足定义域关于原点对称的情况下)若,则是奇函数;若,则是偶函数.8、D【解题分析】因回归直线一定过这组数据的样本中心点(x点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求a,b,写出回归方程,回归直线方程恒过点9、A【解题分析】

分析:利用微积分基本定理求得,先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式的常数项.详解:由题意,二项式为,设展开式中第项为,,令,解得,代入得展开式中可得常数项为,故选A.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.10、A【解题分析】二项式展开式的通项为。所以展开式中项的系数为.选.11、A【解题分析】试题分析:∵函数是定义在上的奇函数,∴,令代入可得,函数关于对称,由函数的图象与函数的图象关于直线对称,函数关于对称从而有,故选A.考点:奇偶函数图象的对称性.【思路点睛】利用奇函数的定义可把已知转化为,从而可得函数关于对称,函数的图象与函数的图象关于直线对称,则关于对称,代入即可求出结果.12、C【解题分析】

根据反证法的要求,反设时条件不变,结论设为相反,从而得到答案.【题目详解】命题“若,则”,要用反证法证明,则其反设需满足条件不变,结论设为相反,所以正确的反设为,故选C项.【题目点拨】本题考查利用反证法证明时,反设应如何写,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.14、【解题分析】

利用长方体外接球直径为其体对角线长求得外接球半径,及所对球心角,利用弧长公式求出答案.【题目详解】由,,得,长方体外接球的半径为正三角形,,两点间的球面距离为,故答案为:.【题目点拨】本题考查了长方体外接球问题,以及求两点球面距离,属于简单题.15、【解题分析】

连接,交于,连,可得是二面角A﹣BD﹣A1的平面角,在直角三角形中可求得结果.【题目详解】连接,交于,连,如图所示:因为,且在底面内的射影是,所以由三垂线定理可得,所以是二面角A﹣BD﹣A1的平面角,设正方体的棱长为1,则,,所以,因为,所以.故答案为:.【题目点拨】本题考查了三垂线定理,考查了求二面角,关键是作出二面角的平面角,属于基础题.16、【解题分析】分析:根据题意,令g(x)=,对其求导可得g′(x),分析可得g′(x)<0,即函数g(x)为减函数;结合f(1)=e可得g(1)=,则不等式f(x)>ex⇔>1⇔g(x)>1⇔g(x)>g(1),借助函数的单调性分析可得答案.详解:根据题意,令g(x)=,则其导数g′(x)=,又由f′(x)<f(x),则有g′(x)<0,即函数g(x)为减函数;且g(1)=;则不等式f(x)>ex⇔>1⇔g(x)>1⇔g(x)>g(1),又由函数g(x)为减函数,则有x<1;则不等式f(x)>ex的解集为(-∞,1);故答案为:.点睛:(1)本题主要考查利用导数求函数的单调性和解不等式,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答本题的关键是构造函数g(x)=求其单调性,再利用单调性解不等式g(x)>g(1).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,.(2)是首项为,公比为的等比数列;理由见解析.【解题分析】分析:(1)先根据递推关系式求,,;,再求,,;(2)根据等比数列定义证明为等比数列.详解:(1)由条件可得:,将代入,得,而,∴,将代入,得,∴,∴,,.(2)是首项为2,公比为3的等比数列.由条件可得:,即,又,∴是首项为2,公比为3的等比数列.点睛:证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.等比数列的判定方法18、(1)见解析;(2)见解析【解题分析】

(1)对求导,分,,,进行讨论,可得函数的单调性;(2)将代入,对求导,可得,再对求导,可得函数有唯一极大值点,且.可得,设,对其求导后可得.【题目详解】解:(1),又,,时,,所以可解得:函数在单调递增,在单调递减;经计算可得,时,函数在单调递减,单调递增,单调递减;时,函数在单调递减,单调递增,单调递减;时,函数在单调递减.综上:时,函数在单调递增,单调递减;时,函数在单调递减,单调递增,单调递减;时,函数在单调递减;时,函数在单调递减,单调递增,单调递减.(2)若,则,,设,则,当时,单调递减,即单调递减,当时,单调递增,即单调递增.又因为由可知:,而,且,,使得,且时,单调递增,时,单调递减,时,单调递增,所以函数有唯一极大值点,且..所以,设(),则,在单调递增,,,又因为,.【题目点拨】本题主要考查导数、函数的单调性等知识,考查方程与函数、分类与整合的数学思想,考查学生的推理论证能力与运算求解能力.19、(1);(2).【解题分析】分析:(1)先根据展开式中所有项的系数和为得到n=6,再求展开式中二项式系数最大的项.(2)先求出的展开式中的一次项和常数项,再求的展开式中的常数项.详解:(1)由题意,令得,即,所以展开式中二项式系数最大的项是第项,即.(2)展开式的第项为.,由,得;由,得.所以的展开式中的常数项为.点睛:(1)本题主要考查二项式定理,考查二项式展开式的系数和二项式系数,考查展开式中的特定项,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)本题的难点在第2问,展开式的常数项有两种生成方式,一是由(x+2)的一次项“x”和的“”项相乘得到,二是由(x+2)的常数项“2”和的常数项相乘得到,再把两个相加即得.20、(1);(2).【解题分析】

(1)根据二次函数图象以及零点存在定理列不等式,解得的取值范围,(2)根据对称轴与定义区间位置关系分类讨论满足题意的条件,解不等式得的取值范围.【题目详解】(Ⅰ)因为函数在区间和上各有一个零点,所以有解得所以的取值范围为:(Ⅱ)要使在区间上恒成立,需满足或或解得:无解或或无解所以所以的取值范围为:.【题目点拨】研究二次函数最值或单调性,一般根据对称轴与定义区间位置关系进行分类讨论;研究二次方程在定义区间有解,一般从开口方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论