




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市上海师大附中高二数学第二学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点坐标是()A. B. C. D.2.已知,,则等于()A. B. C. D.13.设函数为自然对数的底数)在上单调递增,则实数的取值范围为()A. B. C. D.4.已知,,,则()A.0.6 B.0.7 C.0.8 D.0.95.由曲线,直线所围成的平面图形的面积为()A. B. C. D.6.在一次独立性检验中,其把握性超过99%但不超过99.5%,则的可能值为()参考数据:独立性检验临界值表0.1000.0500.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.5.424 B.6.765 C.7.897 D.11.8977.已知函数,函数有四个不同的零点,从小到大依次为,,,,则的取值范围为()A. B. C. D.8.设曲线及直线所围成的封闭图形为区域,不等式组所确定的区域为,在区域内随机取一点,则该点恰好在区域内的概率为()A. B. C. D.9.设为虚数单位,若复数满足,则复数()A. B. C. D.10.已知展开式中项的系数为5,则=()A. B.π C.2π D.4π11.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8 B.15 C.18 D.3012.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为和的线段,则的最大值为.14.设随机变量,,若,则___________.15.若与的夹角为,,,则________.16.双曲线上一点到点的距离为9,则点到点的距离______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数,i为虚数单位.(1)求;(2)若复数z满足,求的最大值.18.(12分)随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):经常使用偶尔或不用合计30岁及以下703010030岁以上6040100合计13070200(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?(Ⅱ)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.(1)分别求这5人中经常使用、偶尔或不用共享单车的人数;(2)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.参考公式:,其中.参考数据:P(K2≥k0)0.150.100.050.0250.010k02.0722.7063.8415.0246.63519.(12分)已知椭圆C:x2a2+y2(1)求椭圆C的标准方程;(2)设M为椭圆C的右顶点,过点N(6,0)且斜率不为0的直线l与椭圆C相交于P,Q两点,记直线PM,QM的斜率分别为k1,k2,求证:20.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2+acos2=c.(Ⅰ)求证:a,c,b成等差数列;(Ⅱ)若C=,△ABC的面积为2,求c.21.(12分)已如变换对应的变换矩阵是,变换对应的变换矩阵是.(Ⅰ)若直线先经过变换,再经过变换后所得曲线为,求曲线的方程;(Ⅱ)求矩阵的特征值与特征向量.22.(10分)观察下列等式:;;;;;(1)猜想第n(n∈N*)个等式;(2)用数学归纳法证明你的猜想.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:先把抛物线的方程化成标准方程,再求其焦点坐标.详解:由题得,所以抛物线的焦点坐标为.故答案为A.点睛:(1)本题主要考查抛物线的简单几何性质,意在考查学生对这些知识的掌握水平.(2)研究圆锥曲线时,首先一般把曲线的方程化成标准方程再研究.2、A【解题分析】
根据和角的范围可求出=—,再根据两角和与差的正弦求出的值,进而求出,代入求出结果即可.【题目详解】因为,,=—,所以==,所以,所以=.故选A.【题目点拨】本题考查三角函数给值求角,两角和与差的正弦,诱导公式的应用,特殊角的三角函数值,属于基础题.3、D【解题分析】
根据单调性与导数的关系,有在上恒成立,将恒成立问题转化成最值问题,利用导数,研究的单调性,求出最小值,即可得到实数的取值范围。【题目详解】依题意得,在上恒成立,即在上恒成立,设,令,,,所以,,,故选D。【题目点拨】本题主要考查函数单调性与导数的关系,将函数在某区间单调转化为导数或者的恒成立问题,再将其转化为最值问题,是解决此类问题的常规思路。4、D【解题分析】分析:根据随机变量服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得.详解:由题意,
∵随机变量,,
∴故选:D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.5、C【解题分析】
由,解得,解得,解得,所围成的平面图形的面积为,则,,故选C.6、B【解题分析】
根据独立性检验表解题【题目详解】把握性超过99%但不超过99.5%,,选B【题目点拨】本题考查独立性检验表,属于简单题.7、B【解题分析】分析:通过f(x)的单调性,画出f(x)的图象和直线y=a,考虑四个交点的情况,得到x1=-2-x2,-1<x2≤0,x3x4=4,再由二次函数的单调性,可得所求范围.详解:当x>0时,f(x)=,可得f(x)在x>2递增,在0<x<2处递减,
由f(x)=e
(x+1)2,x≤0,
x<-1时,f(x)递减;-1<x<0时,f(x)递增,
可得x=-1处取得极小值1,
作出f(x)的图象,以及直线y=a,
可得e
(x1+1)2=e
(x2+1)2=,即有x1+1+x2+1=0,可得x1=-2-x2,-1<x2≤0,可得x3x4=4,
x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1<x2≤0递减,
可得所求范围为[4,5).故选B.点睛:本题考查函数方程的转化思想,以及数形结合思想方法,考查二次函数的最值求法,化简整理的运算能力,属于中档题.8、C【解题分析】分析:求出两个区域的面积,由几何概型概率公式计算可得.详解:由题意,,∴,故选C.点睛:以面积为测度的几何概型问题是几何概型的主要问题,而积分的重要作用正是计算曲边梯形的面积,这类问题巧妙且自然地将新课标新增内容——几何概型与定积分结合在一起,是近几年各地高考及模拟中的热点题型.预计对此类问题的考查会加大力度.9、D【解题分析】
先由题意得到,,根据复数的除法运算法则,即可得出结果.【题目详解】因为,所以.故选:D【题目点拨】本题主要考查复数的运算,熟记除法运算法则即可,属于基础题型.10、B【解题分析】
通过展开式中项的系数为列方程,解方程求得的值.利用几何法求得定积分的值.【题目详解】展开式中项为即,条件知,则;于是被积函数图像,围成的图形是以为圆心,以2为半径的圆的,利用定积分的几何意义可得,选B.【题目点拨】本小题主要考查二项式展开式,考查几何法计算定积分,属于中档题.11、A【解题分析】
本题是一个分类计数问题,解决问题分成两个种类,根据分类计数原理知共有3+5=8种结果.【题目详解】由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有3+5=8种结果,故选A.【题目点拨】本题考查分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.12、C【解题分析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【题目详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【题目点拨】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】构造如图所示长方体,长方体的长、宽、高分别为,则,,,,所以。则(当且仅当,上式取等号)。14、【解题分析】
由求出,然后即可算出【题目详解】因为,所以解得,所以所以故答案为:【题目点拨】本题考查的是二项分布的相关知识,较简单.15、【解题分析】
,由此求出结果.【题目详解】解:与的夹角为,,,.故答案为:.【题目点拨】本题考查向量的模的求法,考查向量的数量积公式,考查运算能力,属于基础题.16、或【解题分析】
先根据双曲线方程求出焦点坐标,再结合双曲线的定义可得到,进而可求出的值,得到答案.【题目详解】双曲线,,,,和为双曲线的两个焦点,点在双曲线上,,解或,,或,故答案为:或.【题目点拨】本题主要考查的是双曲线的定义,属于基础题.求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据求解,注意对所求结果进行必要的验证,负数应该舍去,且所求距离应该不小于.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2).【解题分析】分析:(1)化简复数即可;(2)设,则则复数对应点的轨迹是以为圆心,2为半径的圆,复数对应点,所以即可先求点到圆心的距离再减去半径即可.详解:(1)(2)设,因为,所以在复平面中,复数对应点,复数对应点的轨迹是以为圆心,2为半径的圆;因为AO=,所以的最大值为.点睛:与复数几何意义、模有关的解题技巧(1)只要把复数z=a+bi(a,b∈R)与向量对应起来,就可以根据平面向量的知识理解复数的模、加法、减法的几何意义,并根据这些几何意义解决问题.(2)有关模的运算要注意灵活运用模的运算性质.18、(1)能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关;(2)选出的2人中至少有1人经常使用共享单车的概率.【解题分析】试题分析:(1)计算k2,与2.027比较大小得出结论,(2)(i)根据分层抽样即可求出,(ii)设这5人中,经常使用共享单车的3人分别为a,b,c;偶尔或不用共享单车的2人分别为d,e,根据古典概率公式计算即可.试题解析:(1)由列联表可知,.因为,所以能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关.(2)(i)依题意可知,所抽取的5名30岁以上的网友中,经常使用共享单车的有(人),偶尔或不用共享单车的有(人).(ii)设这5人中,经常使用共享单车的3人分别为,,;偶尔或不用共享单车的2人分别为,.则从5人中选出2人的所有可能结果为,,,,,,,,,共10种.其中没有1人经常使用共享单车的可能结果为共1种,故选出的2人中至少有1人经常使用共享单车的概率.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.19、(1)x2【解题分析】
(1)由题意可得e=ca=222ab=4【题目详解】(1)由题意有e=ca=222ab=42(2)由(1)可知M(2,0),依题意得直线l的斜率存在,设其方程为y=k(x-6)(k≠0),设Px1,y1,Q消去y并整理可得(1+2kx1+x2=k2【题目点拨】本题考查了椭圆的标准方程,考查了直线与椭圆的位置关系,考查了直线的斜率及韦达定理的应用,考查了学生的计算能力,属于中档题.20、(1)见解析(2)【解题分析】
试题分析:(1)先根据二倍角公式降次,再根据正弦定理将边化为角,结合两角和正弦公式以及三角形内角关系化简得sinB+sinA=2sinC,最后根据正弦定理得a+b=2c(2)先根据三角形面积公式得ab=8,再根据余弦定理解得c.试题解析:(Ⅰ)证明:由正弦定理得:即,∴sinB+sinA+sinBcosA+cosBsinA=3sinC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务合同模板
- 租赁合同:融资租赁协议3篇
- 集体耕地承包合同2篇
- 瑞吉氏染色课件
- 安全方面的培训课题课件
- 理财和养老课件
- 理想华莱课件教学
- 店面升级装修工程方案(3篇)
- 电厂氨水改造工程方案(3篇)
- 球磨机培训课件
- 资源调查与评价-课件
- 新型给药系统行业分析报告
- 特种设备日管控、周排查、月调度模板
- 山东钢铁集团矿业有限公司彭集铁矿采选工程项目环境影响报告
- 员工信息安全培训手册
- 华为项目管理10大模板Excel版可直接套用-非常实用
- 空管三校联考复习题(DOC)
- GB/T 27021.3-2021合格评定管理体系审核认证机构要求第3部分:质量管理体系审核与认证能力要求
- 3000储罐预制安装施工方案
- 食品工程原理(课堂)课件
- 五年级上册数学课件-《练习一》北师大版 (共10张PPT)
评论
0/150
提交评论