




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京101中学数学高二第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线y=x+1与曲线y=A.1B.2C.-1D.-22.在的展开式中,的系数为()A.-120 B.120 C.-15 D.153.函数在上单调递减,且为奇函数,若,则满足的的取值范围是()A. B. C. D.4.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是.A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有5.已知复数,则复数的模为()A.2 B. C.1 D.06.l:与两坐标轴所围成的三角形的面积为A.6 B.1 C. D.37.的展开式中,系数最小的项为()A.第6项 B.第7项 C.第8项 D.第9项8.已知高为3的正三棱柱ABC-A1B1C1的每个顶点都在球O的表面上,若球O的表面积为,则此正三棱柱ABC-A1B1C1的体积为()A. B. C. D.189.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是()A.2 B.3 C.4 D.510.已知数列的通项公式为,则()A.-1 B.3 C.7 D.911.已知集合,,则()A. B. C. D.12.已知为两条不同的直线,为两个不同的平面,则()①若,,且∥,则∥;②若,∥,且∥,则;③若∥,,且,则∥;④若,,且,则.其中真命题的个数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有四个零点,则实数的取值范围是__________.14.的二项展开式中项的系数为________.15.能够说明“恒成立”是假命题的一个的值为______.16.36的所有正约数之和可按如下方法得到:因为,所以36的所有正约数之和为,参照上述方法,可得100的所有正约数之和为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=xex(1)求函数f(x)的极值.(2)若f(x)﹣lnx﹣mx≥1恒成立,求实数m的取值范围.18.(12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:附:的观测值(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB,D,E分别是AB,BB1的中点,且AC=BC=AA1=1.(1)求直线BC1与A1D所成角的大小;(1)求直线A1E与平面A1CD所成角的正弦值.20.(12分)已知函数.求的单调区间;若在处取得极值,直线y=与的图象有三个不同的交点,求的取值范围.21.(12分)知数列的前项和.(1)求的通项公式;(2)设,求数列的前项和.22.(10分)求二项式的展开式中项系数最大的项的系数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】设切点P(x0,y∴x2、C【解题分析】
写出展开式的通项公式,令,即,则可求系数.【题目详解】的展开式的通项公式为,令,即时,系数为.故选C【题目点拨】本题考查二项式展开的通项公式,属基础题.3、C【解题分析】
先由函数是奇函数求出,化原不等式为,再由函数的单调性,即可得出结果.【题目详解】因为为奇函数,若,则,所以不等式可化为,又在上单调递减,所以,解得.故选C【题目点拨】本题主要考查由函数的单调性与奇偶性解不等式,熟记函数基本性质即可,属于常考题型.4、D【解题分析】独立性检验是判断两个分类变量是否有关;吸烟与患肺癌是两个分类变量,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有以上的把握认为这个结论是成立的.指的是得出“吸烟与患肺癌有关”这个结论正确的概率超过99%,即作出“吸烟与患肺癌有关”这个结论犯错的概率不超过1%;不能作为判断吸烟人群中有多少人患肺癌,以及1个人吸烟,这个人患有肺癌的概率的依据.故选D5、C【解题分析】
根据复数的除法运算求出,然后再求出即可.【题目详解】由题意得,∴.故选C.【题目点拨】本题考查复数的除法运算和复数模的求法,解题的关键是正确求出复数,属于基础题.6、D【解题分析】
先求出直线与坐标轴的交点,再求三角形的面积得解.【题目详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【题目点拨】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.7、C【解题分析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C。8、C【解题分析】
根据体积算出球O的半径r,再由几何关系求出地面三角形的边长,最后求出其体积即可。【题目详解】因为球O的表面积为,所以球O的半径又因高为3所以底面三角形的外接圆半径为,边长为3底面三角形面积为正三棱柱ABC-A1B1C1的体积为【题目点拨】本题考查正三棱柱的体积公式,考查了组合体问题,属于中档题。9、C【解题分析】把三视图还原为原几何体为一个四棱锥,底面是边长为3的正方形,侧棱底面ABCD,四个侧面均为直角三角形,则此几何体各面中直角三角形的个数是4个,选C.10、C【解题分析】
直接将代入通项公式,可得答案.【题目详解】数列的通项公式为.所以当时,.故选:C【题目点拨】本题考查求数列中的项,属于基础题.11、A【解题分析】
由已知得,因为,所以,故选A.12、B【解题分析】
根据空间直线与平面平行、垂直,平面与平面平行、垂直的判定定理和性质定理,逐项判断,即可得出结论.【题目详解】由且,可得,而垂直同一个平面的两条直线相互平行,故①正确;由于,,所以,则,故②正确;若与平面的交线平行,则,故不一定有,故③错误;设,在平面内作直线,,则,又,所以,,所以,从而有,故④正确.因此,真命题的个数是.故选:B【题目点拨】本题考查了空间线面位置关系的判定和证明,其中熟记空间线面位置中的平行与垂直的判定定理与性质定理是解题的关键,考查直观想象能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意可知是偶函数,根据对称性问题转化为直线与曲线有两个交点.【题目详解】因为是偶函数,根据对称性,在上有两个不同的实根,即在上有两个不同的实根,等价转化为直线与曲线有两个交点,而,则当时,,当时,,所以函数在上是减函数,在上是增函数,于是,故故答案为:【题目点拨】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.14、60【解题分析】
先写出二项展开式的通项,,令,进而可求出结果.【题目详解】因为的二项展开式的通项为:,令,则,所以项的系数为.故答案为:【题目点拨】本题主要考查求指定项的系数,熟记二项式定理即可,属于常考题型.15、0【解题分析】
不等式恒成立等价于恒成立,因此可构造函数,求其最值,从而找到命题不成立的具体值.【题目详解】设函数,则有,当时,有,单调递减;当时,有,单调递增;故为最小值点,有.因此,当时,命题不能成立.故能够说明“恒成立”是假命题的一个x的值为0【题目点拨】说明一个命题为假命题,只需举出一个反例即可,怎样找到符合条件的反例是关键.在处理时常要假设命题为真,进行推理,找出命题必备条件.16、1【解题分析】
根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+221+5+52),计算可得答案.【题目详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52,所以100的所有正约数之和为(1+2+221+5+52)=1.可求得100的所有正约数之和为1;故答案为:1.【题目点拨】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值.无极大值;(2)【解题分析】
(1)利用导数可得函数在上单调递减,在上单调递增,即可得到函数的极值;(2)由题意得恒成立,即恒成立,设,求得函数的导数,得到函数在有唯一零点,进而得到函数最小值,得到的取值范围.【题目详解】(1)由题意,函数的定义域为,则因为,所以,函数在上单调递减,在上单调递增;函数在处取得极小值.无极大值(2)由题意知恒成立即()恒成立设=,则设,易知在单调递增,又=<0,>0,所以在有唯一零点,即=0,且,单调递减;,单调递增,所以=,由=0得=,即,由(1)的单调性知,,,所以==1,即实数的取值范围为【题目点拨】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.18、(1);(2)见解析;(3)见解析【解题分析】
(1)用需要志愿者提供帮助的人数除以老年人总数可得;(2)利用观测值公式以及列联表可计算观测值,再结合临界值表可得;(3)根据需要志愿者提供帮助的男女人数存在显著差异,可得采用分层抽样方法比采用简单随机抽样的方法更好.【题目详解】(1)调查的500位老人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为.(2)随机变量的观测值.由于,因此,在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)由(2)的结论知,该地区的老年人是否需要帮助与性别有关,并且从样本数据中能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,并采用分层抽样方法比采用简单随机抽样的方法更好.【题目点拨】本题考查了分层抽样,独立性检验,属中档题.19、(1)(1)【解题分析】
(1)建立空间直角坐标系,求出相关点的坐标,求出,,根据,即可求得直线BC1与A1D所成角的大小;(1)由于平面不是特殊的平面,故建系用法向量求解,求出平面的法向量,求和的夹角,即可求得答案.【题目详解】(1)分别以所在直线为轴建立空间直角坐标系.如图:则由题意可得:,,又∵分别是的中点,直线BC1与A1D所成角的大小.(1)设平面法向量为由,得,可取又直线与平面所成角的正弦值为【题目点拨】本题考查立体几何中异面直线夹角,线面所成角的求法.根据题意画出几何图形,对于立体几何中角的计算问题,可以利用空间向量法,利用向量的夹角公式求解,属于基础题.20、【解题分析】
解:(Ⅰ),
①当a<0时,f′(x)>0,f(x)在R上单调递增;
②当a>0时,由f′(x)>0即,解得或,
由f′(x)<0得,
∴f(x)的单调增区间为和(,+∞);f(x)的单调减区间是.
(Ⅱ)因为f(x)在x=−1处取得极大值,
所以,∴a=1.
所以,
由f′(x)=0解得.
由(1)中f(x)的单调性可知,f(x)在x=−1处取得极大值f(−1)=1,
在x=1处取得极小值f(1)=−2.
因为直线y=m与函数y=f(x)的图象有三个不同的交点,
结合f(x)的单调性可知,m的取值范围是(−2,1);21、(1);(2)。【解题分析】
(1)利用当时,,再验证即可.(2)由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025建筑工地吊车租赁合同示范文本
- 2025合同条款中的格式条款和霸王条款
- 内科体液调节护理
- 皮疹的护理诊断
- 2025年辽宁省本溪市中考二模地理与生物试题
- 2025年风湿免疫理论知识试题
- 医学伦理与器官移植核心议题
- 小学生流感传染病防控教育
- 传染性肝炎防治与管理
- 小儿碘缺乏症的临床护理
- 【语文】第23课《“蛟龙”探海》课件 2024-2025学年统编版语文七年级下册
- 大部分分校:地域文化形考任务一-国开(CQ)-国开期末复习资料
- 2024年江苏省南通市中考地理试题(含答案)
- 跨文化商务交际智慧树知到期末考试答案章节答案2024年西安工业大学
- MOOC 财务报表分析-华中科技大学 中国大学慕课答案
- 输送带生产所参考的国际标准
- 对氨基苯酚物质安全数据表(MSDS)
- PPP跟踪审计方案
- “珠江专科医疗联盟”推进学科发展的实践与创新PPT课件
- XX公司粗苯泄漏着火事故演练方案定
- 上海健康医学院校徽校训释义
评论
0/150
提交评论